論文の概要: Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy
- arxiv url: http://arxiv.org/abs/2201.09932v5
- Date: Tue, 25 Jul 2023 14:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 22:00:53.290350
- Title: Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy
- Title(参考訳): 最適な公平分類木を学習する:解釈可能性、公正性、正確性の間のトレードオフ
- Authors: Nathanael Jo, Sina Aghaei, Andr\'es G\'omez, Phebe Vayanos
- Abstract要約: 最適分類木を学習するための混合整数最適化フレームワークを提案する。
我々は、一般的なデータセットの公平な分類のための最先端アプローチに対して、我々の手法をベンチマークする。
我々の手法は、ほぼ完全に一致した決定を一貫して見つけ出すが、他の手法は滅多にない。
- 参考スコア(独自算出の注目度): 7.215903549622416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing use of machine learning in high-stakes domains -- where
people's livelihoods are impacted -- creates an urgent need for interpretable,
fair, and highly accurate algorithms. With these needs in mind, we propose a
mixed integer optimization (MIO) framework for learning optimal classification
trees -- one of the most interpretable models -- that can be augmented with
arbitrary fairness constraints. In order to better quantify the "price of
interpretability", we also propose a new measure of model interpretability
called decision complexity that allows for comparisons across different classes
of machine learning models. We benchmark our method against state-of-the-art
approaches for fair classification on popular datasets; in doing so, we conduct
one of the first comprehensive analyses of the trade-offs between
interpretability, fairness, and predictive accuracy. Given a fixed disparity
threshold, our method has a price of interpretability of about 4.2 percentage
points in terms of out-of-sample accuracy compared to the best performing,
complex models. However, our method consistently finds decisions with almost
full parity, while other methods rarely do.
- Abstract(参考訳): 人々の生活に影響を及ぼす高い領域における機械学習の利用の増加は、解釈可能で公平で高精度なアルゴリズムに対する緊急の必要性を生み出します。
これらのニーズを念頭に、任意の公正性制約で拡張可能な最適分類木(最も解釈可能なモデルの一つ)を学習するための混合整数最適化(MIO)フレームワークを提案する。
また,「解釈可能性の価格」をより定量化するために,機械学習モデルの異なるクラス間の比較を可能にする決定複雑性と呼ばれるモデル解釈可能性の新しい尺度を提案する。
一般的なデータセットの公正な分類のための最先端のアプローチに対して,本手法をベンチマークし,解釈可能性,公平性,予測精度のトレードオフを包括的に分析した。
定値差の閾値が与えられた場合、本手法は、最も高性能で複雑なモデルと比較して、サンプル外精度で約4.2ポイントの解釈性を持つ。
しかし,本手法は,ほぼ同値な決定を常に見つけ出すが,他の手法では行わない。
関連論文リスト
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
本稿では、分類問題における人口統計学の特質的トレードオフの完全な評価について述べる。
ランダム化および属性認識フェア分類器によって達成可能な最小誤差率は、ワッサーシュタイン・バリセンタ問題の最適値によって与えられることを示す。
論文 参考訳(メタデータ) (2022-11-03T00:04:04Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Fairly Accurate: Learning Optimal Accuracy vs. Fairness Tradeoffs for
Hate Speech Detection [8.841221697099687]
本稿では,モデルトレーニングにおけるグループフェアネスの直接最適化を可能にする,微分可能な尺度を提案する。
ヘイトスピーチ検出の特定のタスクについて,本手法の評価を行った。
畳み込み、シーケンシャル、トランスフォーマーに基づくニューラルネットワークによる実験結果は、事前の作業よりも経験的精度が優れている。
論文 参考訳(メタデータ) (2022-04-15T22:11:25Z) - Group-Aware Threshold Adaptation for Fair Classification [9.496524884855557]
複数のフェアネス制約を克服する新しいポストプロセッシング手法を提案する。
理論的には,同条件下での既存手法よりも近似最適に近い上界を許容する。
実験の結果,本手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-08T04:36:37Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
分類における公平性の目標は、人種や性別などのセンシティブな属性に基づいて個人のグループを識別しない分類器を学習することである。
公正アルゴリズムを設計する1つのアプローチは、公正の概念の緩和を正規化項として使うことである。
我々はこの性質を利用して、既存の緩和よりも証明可能な公正の概念を近似する微分可能な緩和を定義する。
論文 参考訳(メタデータ) (2020-09-09T17:40:24Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。