K-Deep Simplex: Deep Manifold Learning via Local Dictionaries
- URL: http://arxiv.org/abs/2012.02134v4
- Date: Tue, 30 Jul 2024 23:39:47 GMT
- Title: K-Deep Simplex: Deep Manifold Learning via Local Dictionaries
- Authors: Pranay Tankala, Abiy Tasissa, James M. Murphy, Demba Ba,
- Abstract summary: We propose K-Deep Simplex which learns a dictionary comprising synthetic landmarks, along with representation coefficients supported on a simplex.
We solve the proposed optimization program using alternating minimization and design an efficient, interpretable autoencoder using algorithm unrolling.
Experiments show that the algorithm is highly efficient and performs competitively on synthetic and real data sets.
- Score: 8.137198664755598
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose K-Deep Simplex(KDS) which, given a set of data points, learns a dictionary comprising synthetic landmarks, along with representation coefficients supported on a simplex. KDS employs a local weighted $\ell_1$ penalty that encourages each data point to represent itself as a convex combination of nearby landmarks. We solve the proposed optimization program using alternating minimization and design an efficient, interpretable autoencoder using algorithm unrolling. We theoretically analyze the proposed program by relating the weighted $\ell_1$ penalty in KDS to a weighted $\ell_0$ program. Assuming that the data are generated from a Delaunay triangulation, we prove the equivalence of the weighted $\ell_1$ and weighted $\ell_0$ programs. We further show the stability of the representation coefficients under mild geometrical assumptions. If the representation coefficients are fixed, we prove that the sub-problem of minimizing over the dictionary yields a unique solution. Further, we show that low-dimensional representations can be efficiently obtained from the covariance of the coefficient matrix. Experiments show that the algorithm is highly efficient and performs competitively on synthetic and real data sets.
Related papers
- Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing [47.32366699399839]
Finding an approximate secondepsilon dependence (SOSP) is a well-studied and fundamental problem.
In this paper we apply our framework to the problem of lowdimension sensing machine optimization.
arXiv Detail & Related papers (2024-03-12T01:27:44Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Matching Pursuit Based Scheduling for Over-the-Air Federated Learning [67.59503935237676]
This paper develops a class of low-complexity device scheduling algorithms for over-the-air learning via the method of federated learning.
Compared to the state-of-the-art proposed scheme, the proposed scheme poses a drastically lower efficiency system.
The efficiency of the proposed scheme is confirmed via experiments on the CIFAR dataset.
arXiv Detail & Related papers (2022-06-14T08:14:14Z) - Introducing the Expohedron for Efficient Pareto-optimal Fairness-Utility
Amortizations in Repeated Rankings [9.066817876491053]
We consider the problem of computing a sequence of rankings that maximizes consumer-side utility while minimizing producer-side individual unfairness of exposure.
We introduce a geometrical object, a polytope that we call expohedron, whose points represent all achievable exposures of items for a Position Based Model.
Our approach compares favorably to linear or quadratic programming baselines in terms of algorithmic complexity and empirical runtime.
Our solution can be expressed as a distribution over only $n$ permutations, instead of the $(n-1)2 + 1$ achieved with BvN decompositions.
arXiv Detail & Related papers (2022-02-07T14:43:35Z) - Lattice partition recovery with dyadic CART [79.96359947166592]
We study piece-wise constant signals corrupted by additive Gaussian noise over a $d$-dimensional lattice.
Data of this form naturally arise in a host of applications, and the tasks of signal detection or testing, de-noising and estimation have been studied extensively in the statistical and signal processing literature.
In this paper we consider instead the problem of partition recovery, i.e.of estimating the partition of the lattice induced by the constancy regions of the unknown signal.
We prove that a DCART-based procedure consistently estimates the underlying partition at a rate of order $sigma2 k*
arXiv Detail & Related papers (2021-05-27T23:41:01Z) - Weighed l1 on the simplex: Compressive sensing meets locality [4.47196217712431]
Sparse manifold learning algorithms combine techniques in manifold learning and sparse optimization to learn features that could be utilized for downstream tasks.
Due to the intrinsic geometric structure of data, dictionary atoms might be redundant and do not satisfy the restricted isometry property or coherence condition.
We discuss an optimization program that learns the dictionaries and sparse coefficients and demonstrate the utility of our regularization on synthetic and real datasets.
arXiv Detail & Related papers (2021-04-28T17:26:29Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Wasserstein k-means with sparse simplex projection [20.661025590877774]
This paper presents a proposal of a faster Wasserstein $k$-means algorithm for histogram data.
We shrink data samples, centroids, and the ground cost matrix.
We harness sparse simplex projection while keeping the degradation of clustering quality lower.
arXiv Detail & Related papers (2020-11-25T06:37:45Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
arXiv Detail & Related papers (2020-03-24T19:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.