Qubit regularization of asymptotic freedom
- URL: http://arxiv.org/abs/2012.02153v2
- Date: Tue, 27 Apr 2021 16:14:48 GMT
- Title: Qubit regularization of asymptotic freedom
- Authors: Tanmoy Bhattacharya (1), Alexander J. Buser (2 and 1), Shailesh
Chandrasekharan (3), Rajan Gupta (1), Hersh Singh (4 and 3) ((1) Los Alamos
National Laboratory, Los Alamos, NM, USA, (2) Institute for Quantum
Information and Matter, Caltech, Pasadena, CA, USA, (3) Department of
Physics, Duke University, Durham, NC, USA, (4) Institute for Nuclear Theory,
University of Washington, Seattle, WA, USA)
- Abstract summary: Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
- Score: 35.37983668316551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide strong evidence that the asymptotically free (1+1)-dimensional
non-linear O(3) sigma model can be regularized using a quantum lattice
Hamiltonian, referred to as the "Heisenberg-comb", that acts on a Hilbert space
with only two qubits per spatial lattice site. The Heisenberg-comb consists of
a spin-half anti-ferromagnetic Heisenberg-chain coupled anti-ferromagnetically
to a second local spin-half particle at every lattice site. Using a world-line
Monte Carlo method we show that the model reproduces the universal step-scaling
function of the traditional model up to correlation lengths of 200,000 in
lattice units and argue how the continuum limit could emerge. We provide a
quantum circuit description of time-evolution of the model and argue that
near-term quantum computers may suffice to demonstrate asymptotic freedom.
Related papers
- Analytical approximations for generalized quantum Rabi models [7.708919339137053]
The quantum Rabi model serves as the simplest non-integrable yet solvable model describing the interaction between a two-level system and a single mode of a bosonic field.
We show that the energy spectrum of the generalized quantum Rabi model can be analytically determined by a bi-confluent Fuchsian equation.
arXiv Detail & Related papers (2024-01-11T01:42:17Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Entanglement dynamics of thermofield double states in integrable models [0.0]
We study the entanglement dynamics of thermofield double (TFD) states in integrable spin chains and quantum field theories.
We show that, for a natural choice of the Hamiltonian eigenbasis, the TFD evolution may be interpreted as a quantum quench from an initial state.
We conjecture a formula for the entanglement dynamics, which is valid for both discrete and continuous integrable field theories.
arXiv Detail & Related papers (2021-12-03T16:40:36Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.