論文の概要: Learned Initializations for Optimizing Coordinate-Based Neural
Representations
- arxiv url: http://arxiv.org/abs/2012.02189v2
- Date: Tue, 23 Mar 2021 17:11:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 14:51:44.853340
- Title: Learned Initializations for Optimizing Coordinate-Based Neural
Representations
- Title(参考訳): 座標に基づく神経表現の最適化のための学習初期化
- Authors: Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P.
Srinivasan, Jonathan T. Barron, Ren Ng
- Abstract要約: コーディネートベースのニューラル表現は、離散的な配列ベースの表現の代替として大きな可能性を示してきた。
完全連結ネットワークの初期重みパラメータを学習するために,標準的なメタ学習アルゴリズムを適用することを提案する。
本研究では,2次元画像の表現,CTスキャンの再構成,2次元画像観察から3次元形状やシーンを復元するなど,様々なタスクにまたがってこれらのメリットを探求する。
- 参考スコア(独自算出の注目度): 47.408295381897815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coordinate-based neural representations have shown significant promise as an
alternative to discrete, array-based representations for complex low
dimensional signals. However, optimizing a coordinate-based network from
randomly initialized weights for each new signal is inefficient. We propose
applying standard meta-learning algorithms to learn the initial weight
parameters for these fully-connected networks based on the underlying class of
signals being represented (e.g., images of faces or 3D models of chairs).
Despite requiring only a minor change in implementation, using these learned
initial weights enables faster convergence during optimization and can serve as
a strong prior over the signal class being modeled, resulting in better
generalization when only partial observations of a given signal are available.
We explore these benefits across a variety of tasks, including representing 2D
images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D
image observations.
- Abstract(参考訳): 座標に基づく神経表現は、複雑な低次元信号に対する離散的な配列に基づく表現の代替として大きな期待が持たれている。
しかし、新しい信号ごとにランダムに初期化された重みから座標ネットワークを最適化するのは非効率である。
提案するメタラーニングアルゴリズムは,表現される信号の下位クラス(例えば,顔の画像や椅子の3次元モデル)に基づいて,これらの完全接続ネットワークの初期重みパラメータを学習する。
実装の小さな変更しか必要としないが、学習された初期重みを用いることで、最適化中により高速な収束が可能になり、モデル化される信号クラスよりも強力なプリエンスとして機能し、与えられた信号の部分的な観測のみが可能な場合の一般化が向上する。
2次元画像の表現、ctスキャンの再構成、および2次元画像からの3次元形状とシーンの復元など、さまざまなタスクでこれらの利点を探求する。
関連論文リスト
- Coordinates Are NOT Lonely -- Codebook Prior Helps Implicit Neural 3D
Representations [29.756718435405983]
暗黙的な3D表現は、表面やシーンの再構築や新しいビュー合成において、印象的な成果を上げている。
ニューラル・レージアンス・フィールド(Neural Radiance Field、NeRF)とその変種のような既存のアプローチは、通常、密度の高い入力ビューを必要とする。
暗黙的な3次元表現のための座標モデルCoCo-INRを提案する。
論文 参考訳(メタデータ) (2022-10-20T11:13:50Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
表面形状を暗黙的に表現する最近の学習手法は、多視点3次元再構成の問題において顕著な結果を示している。
我々はこれらの制限を,数発のフル3次元頭部再構成の特定の問題に対処する。
暗黙の表現を用いて,数千個の不完全な生スキャンから3次元頭部形状モデルを学習する。
論文 参考訳(メタデータ) (2021-07-26T23:04:18Z) - ACORN: Adaptive Coordinate Networks for Neural Scene Representation [40.04760307540698]
現在の神経表現は、数十万以上のポリゴンを持つメガピクセルまたは3Dシーン以上の解像度で画像を正確に表現できません。
トレーニングや推論中にリソースを適応的に割り当てる新しいハイブリッド暗黙的ネットワークアーキテクチャとトレーニング戦略を紹介します。
ギガピクセル画像を40dB近いピーク信号対雑音比に収まる最初の実験を実証します。
論文 参考訳(メタデータ) (2021-05-06T16:21:38Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - Human Body Model Fitting by Learned Gradient Descent [48.79414884222403]
画像に3次元の人体形状を適合させる新しいアルゴリズムを提案する。
このアルゴリズムは高速(約120ms収束)で、データセットに頑健であり、公開評価データセットの最先端結果が得られることを示す。
論文 参考訳(メタデータ) (2020-08-19T14:26:47Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。