論文の概要: Coarse-to-Fine Memory Matching for Joint Retrieval and Classification
- arxiv url: http://arxiv.org/abs/2012.02287v1
- Date: Sun, 29 Nov 2020 05:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 09:07:08.603104
- Title: Coarse-to-Fine Memory Matching for Joint Retrieval and Classification
- Title(参考訳): 検索と分類のための大容量メモリマッチング
- Authors: Allen Schmaltz and Andrew Beam
- Abstract要約: 共同検索と分類のための新しいエンドツーエンド言語モデルを提案する。
FEVERファクト検証データセットの標準ブラインドテストセットで評価する。
我々は、モデルを分析・制約するためのこの設定に、模範監査を拡張します。
- 参考スコア(独自算出の注目度): 0.7081604594416339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel end-to-end language model for joint retrieval and
classification, unifying the strengths of bi- and cross- encoders into a single
language model via a coarse-to-fine memory matching search procedure for
learning and inference. Evaluated on the standard blind test set of the FEVER
fact verification dataset, classification accuracy is significantly higher than
approaches that only rely on the language model parameters as a knowledge base,
and approaches some recent multi-model pipeline systems, using only a single
BERT base model augmented with memory layers. We further demonstrate how
coupled retrieval and classification can be leveraged to identify low
confidence instances, and we extend exemplar auditing to this setting for
analyzing and constraining the model. As a result, our approach yields a means
of updating language model behavior through two distinct mechanisms: The
retrieved information can be updated explicitly, and the model behavior can be
modified via the exemplar database.
- Abstract(参考訳): 本稿では,双方向およびクロスエンコーダの強みを,学習と推論のための大雑把なメモリマッチング探索手順を通じて単一言語モデルに統一した,統合検索と分類のための新しいエンド・ツー・エンド言語モデルを提案する。
FEVERファクト検証データセットの標準的なブラインドテストセットに基づいて評価すると、分類精度は、言語モデルパラメータを知識ベースとしてのみ依存するアプローチよりも著しく高く、メモリ層を付加した単一のBERTベースモデルのみを使用して、最近の複数のモデルパイプラインシステムにアプローチする。
我々はさらに,低信頼なインスタンスを識別するために検索と分類の結合をどのように活用するかを実証し,モデルの分析と制約のためにexemplar auditingをこの設定に拡張する。
その結果,提案手法は2つの異なるメカニズムによって言語モデルの振る舞いを更新する手段が得られた。
関連論文リスト
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
クリックスルーレート(CTR)予測は、パーソナライズされたオンラインサービスにおいてコア機能モジュールとして機能する。
CTR予測のための従来のIDベースのモデルは、表形式の1ホットエンコードされたID特徴を入力として取る。
事前訓練された言語モデル(PLM)は、テキストのモダリティの文を入力として取る別のパラダイムを生み出した。
本稿では,CTR予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Anchor Points: Benchmarking Models with Much Fewer Examples [88.02417913161356]
6つの人気のある言語分類ベンチマークでは、多数の点の正しいクラスに対するモデル信頼度はモデル間で強く相関している。
Anchor Point Selectionは,データセット全体にわたるモデル動作をキャプチャする,データセットの小さなサブセットを選択する手法である。
平均絶対誤差が低いデータセットの他のすべての点について、クラスごとの予測モデルを推定するために、いくつかのアンカーポイントを使用することができる。
論文 参考訳(メタデータ) (2023-09-14T17:45:51Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
手書き文字認識モデルの開発における評価は容易である。
しかし、開発からアプリケーションに切り替えると、評価プロセスはトリッキーになります。
我々は,レキシコンに基づく評価が,レキシコンに基づく手法と競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T01:26:09Z) - Meeting Summarization with Pre-training and Clustering Methods [6.47783315109491]
HMNetcitehmnetは、ワードレベルのトランスフォーマーとターンレベルのトランスフォーマーの両方をベースラインとして使用する階層型ネットワークである。
中間クラスタリングステップでQMSumciteqmsumの位置列列化アプローチを拡張する。
ベースラインモデルの性能を,要約に有効な最先端言語モデルであるBARTと比較する。
論文 参考訳(メタデータ) (2021-11-16T03:14:40Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
対話型モデルと非対話型モデルの利点を活用する新しいフレームワークを提案する。
非対話型アーキテクチャ上でモデルを構築できる半対話型機構を導入するが、各文書を関連付けられた多言語クエリと共にエンコードする。
本手法は,計算効率を維持しながら検索精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-03T03:03:19Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
関連ラベルを「ターゲット語」として生成するためにシーケンス・ツー・シーケンス・モデルをどのように訓練するかを示す。
提案手法は,データポーラ方式におけるエンコーダのみのモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-03-14T22:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。