XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors
- URL: http://arxiv.org/abs/2012.02407v1
- Date: Fri, 4 Dec 2020 05:08:53 GMT
- Title: XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors
- Authors: Cheng Peng, Haofu Liao, Gina Wong, Jiebo Luo, Shaohua Kevin Zhou, Rama
Chellappa
- Abstract summary: A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
- Score: 118.27130593216096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A radiograph visualizes the internal anatomy of a patient through the use of
X-ray, which projects 3D information onto a 2D plane. Hence, radiograph
analysis naturally requires physicians to relate the prior about 3D human
anatomy to 2D radiographs. Synthesizing novel radiographic views in a small
range can assist physicians in interpreting anatomy more reliably; however,
radiograph view synthesis is heavily ill-posed, lacking in paired data, and
lacking in differentiable operations to leverage learning-based approaches. To
address these problems, we use Computed Tomography (CT) for radiograph
simulation and design a differentiable projection algorithm, which enables us
to achieve geometrically consistent transformations between the radiography and
CT domains. Our method, XraySyn, can synthesize novel views on real radiographs
through a combination of realistic simulation and finetuning on real
radiographs. To the best of our knowledge, this is the first work on radiograph
view synthesis. We show that by gaining an understanding of radiography in 3D
space, our method can be applied to radiograph bone extraction and suppression
without groundtruth bone labels.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Coarse-Fine View Attention Alignment-Based GAN for CT Reconstruction from Biplanar X-Rays [22.136553745483305]
We propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the biplanar views.
Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
arXiv Detail & Related papers (2024-08-19T06:57:07Z) - X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning [24.233484690096898]
Chest X-rays or chest radiography (CXR) enables limited imaging compared to computed tomography (CT) scans.
CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs.
In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolutionA scan.
arXiv Detail & Related papers (2024-06-23T13:53:35Z) - Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans [10.72672892416061]
Over-dosed X-rays superimpose potential risks to human health to some extent.
Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data.
We propose CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains.
arXiv Detail & Related papers (2024-04-18T04:25:56Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
We propose a novel anatomy-enhanced multimodal model to promote impression generation.
In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics.
We utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level.
arXiv Detail & Related papers (2022-10-15T14:05:03Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.