論文の概要: Unleashing the Tiger: Inference Attacks on Split Learning
- arxiv url: http://arxiv.org/abs/2012.02670v3
- Date: Fri, 14 May 2021 19:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 20:32:34.378569
- Title: Unleashing the Tiger: Inference Attacks on Split Learning
- Title(参考訳): unleashing the tiger: 分割学習に対する推論攻撃
- Authors: Dario Pasquini, Giuseppe Ateniese and Massimo Bernaschi
- Abstract要約: クライアントのプライベートトレーニングセットの再構築を目的とした汎用的な攻撃戦略を導入する。
悪意のあるサーバは、分散モデルの学習プロセスを積極的にハイジャックすることができる。
我々は、最近提案された防御手法を克服できることを実証する。
- 参考スコア(独自算出の注目度): 2.492607582091531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the security of Split Learning -- a novel collaborative
machine learning framework that enables peak performance by requiring minimal
resources consumption. In the present paper, we expose vulnerabilities of the
protocol and demonstrate its inherent insecurity by introducing general attack
strategies targeting the reconstruction of clients' private training sets. More
prominently, we show that a malicious server can actively hijack the learning
process of the distributed model and bring it into an insecure state that
enables inference attacks on clients' data. We implement different adaptations
of the attack and test them on various datasets as well as within realistic
threat scenarios. We demonstrate that our attack is able to overcome recently
proposed defensive techniques aimed at enhancing the security of the split
learning protocol. Finally, we also illustrate the protocol's insecurity
against malicious clients by extending previously devised attacks for Federated
Learning. To make our results reproducible, we made our code available at
https://github.com/pasquini-dario/SplitNN_FSHA.
- Abstract(参考訳): リソース消費を最小限に抑えてピークパフォーマンスを実現する新しい機械学習フレームワークであるSplit Learningのセキュリティについて検討する。
本稿では,クライアントのプライベートトレーニングセットの再構築を目的とした汎用攻撃戦略を導入することで,プロトコルの脆弱性を明らかにし,その固有のセキュリティを実証する。
より顕著に、悪意のあるサーバは分散モデルの学習プロセスを積極的にハイジャックし、クライアントのデータに対する推論攻撃を可能にする安全でない状態にすることができる。
攻撃の異なる適応を実装し、さまざまなデータセットでテストし、現実的な脅威シナリオ内でテストします。
我々の攻撃は、分割学習プロトコルのセキュリティ向上を目的とした、最近提案された防御手法を克服できることを示す。
最後に,前回考案したフェデレーション学習への攻撃を拡張することで,悪意のあるクライアントに対するプロトコルの不セキュリティを説明している。
結果を再現できるように、私たちはhttps://github.com/pasquini-dario/SplitNN_FSHA.comでコードを公開しました。
関連論文リスト
- Dullahan: Stealthy Backdoor Attack against Without-Label-Sharing Split Learning [29.842087372804905]
本稿では,非ラベル共有型スプリットラーニングアーキテクチャに適した,ステルスなバックドア攻撃戦略を提案する。
我々のSBATは、訓練中の中間パラメータの変更を控えることで、より高い攻撃ステルスネスを達成する。
論文 参考訳(メタデータ) (2024-05-21T13:03:06Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuardは、クライアント側のトレーニングデータ分散推論攻撃に対する防御を目的とした、新しいビザンチン・ロバスト集約ルールである。
実験の結果,我々の防衛機構はクライアント側のトレーニングデータ分布推定攻撃に対する防御に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T17:41:35Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL)は、プライバシと信頼性の両面でアドバンテージを提供する。
本稿では,P2PFLに対する新たなバックドア攻撃を提案する。
論文 参考訳(メタデータ) (2023-01-23T21:49:28Z) - Network-Level Adversaries in Federated Learning [21.222645649379672]
ネットワークレベルの敵がフェデレーション学習モデルの訓練に与える影響について検討する。
攻撃者は、慎重に選択されたクライアントからネットワークトラフィックを落とすことで、ターゲット個体数のモデル精度を著しく低下させることができることを示す。
我々は,攻撃の影響を緩和するサーバサイドディフェンスを開発し,攻撃対象の精度に肯定的に寄与する可能性のあるクライアントを特定し,アップサンプリングすることで,攻撃の影響を緩和する。
論文 参考訳(メタデータ) (2022-08-27T02:42:04Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - Practical Defences Against Model Inversion Attacks for Split Neural
Networks [5.66430335973956]
本稿では,ネットワーク分割型フェデレーション学習システムが悪意のある計算サーバによるモデルインバージョン攻撃に影響を受けやすい脅威モデルについて述べる。
モデルインバージョンを防御するための簡易な付加雑音法を提案し,mnistの許容精度トレードオフにおいて攻撃効果を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:12:17Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。