Bayesian Active Learning for Wearable Stress and Affect Detection
- URL: http://arxiv.org/abs/2012.02702v1
- Date: Fri, 4 Dec 2020 16:19:37 GMT
- Title: Bayesian Active Learning for Wearable Stress and Affect Detection
- Authors: Abhijith Ragav, Gautham Krishna Gudur
- Abstract summary: Stress detection using on-device deep learning algorithms has been on the rise owing to advancements in pervasive computing.
In this paper, we propose a framework with capabilities to represent model uncertainties through approximations in Bayesian Neural Networks.
Our proposed framework achieves a considerable efficiency boost during inference, with a substantially low number of acquired pool points.
- Score: 0.7106986689736827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent past, psychological stress has been increasingly observed in
humans, and early detection is crucial to prevent health risks. Stress
detection using on-device deep learning algorithms has been on the rise owing
to advancements in pervasive computing. However, an important challenge that
needs to be addressed is handling unlabeled data in real-time via suitable
ground truthing techniques (like Active Learning), which should help establish
affective states (labels) while also selecting only the most informative data
points to query from an oracle. In this paper, we propose a framework with
capabilities to represent model uncertainties through approximations in
Bayesian Neural Networks using Monte-Carlo (MC) Dropout. This is combined with
suitable acquisition functions for active learning. Empirical results on a
popular stress and affect detection dataset experimented on a Raspberry Pi 2
indicate that our proposed framework achieves a considerable efficiency boost
during inference, with a substantially low number of acquired pool points
during active learning across various acquisition functions. Variation Ratios
achieves an accuracy of 90.38% which is comparable to the maximum test accuracy
achieved while training on about 40% lesser data.
Related papers
- NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
We propose a novel active learning strategy, neural tangent kernel clustering-pseudo-labels (NTKCPL)
It estimates empirical risk based on pseudo-labels and the model prediction with NTK approximation.
We validate our method on five datasets, empirically demonstrating that it outperforms the baseline methods in most cases.
arXiv Detail & Related papers (2023-06-07T01:43:47Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - ReLearn: A Robust Machine Learning Framework in Presence of Missing Data
for Multimodal Stress Detection from Physiological Signals [5.042598205771715]
We propose ReLearn, a robust machine learning framework for stress detection from biomarkers extracted from multimodal physiological signals.
ReLearn effectively copes with missing data and outliers both at training and inference phases.
Our experiments show that the proposed framework obtains a cross-validation accuracy of 86.8% even if more than 50% of samples within the features are missing.
arXiv Detail & Related papers (2021-04-29T11:53:01Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
We show that Bayesian neural networks are more efficient than ensemble based techniques in capturing uncertainty.
Our findings also reveal some key drawbacks of the ensemble techniques, which was recently shown to be more effective than Monte Carlo dropouts.
arXiv Detail & Related papers (2021-04-02T06:02:11Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.