論文の概要: Representation Based Complexity Measures for Predicting Generalization
in Deep Learning
- arxiv url: http://arxiv.org/abs/2012.02775v1
- Date: Fri, 4 Dec 2020 18:53:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 00:50:36.997282
- Title: Representation Based Complexity Measures for Predicting Generalization
in Deep Learning
- Title(参考訳): 深層学習における一般化予測のための表現に基づく複雑性尺度
- Authors: Parth Natekar, Manik Sharma
- Abstract要約: ディープニューラルネットワークは、非常に過度にパラメータ化されているにもかかわらず、一般化することができる。
近年の研究では、様々な観点からこの現象を検証している。
内部表現の質の観点から一般化の解釈を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks can generalize despite being significantly
overparametrized. Recent research has tried to examine this phenomenon from
various view points and to provide bounds on the generalization error or
measures predictive of the generalization gap based on these viewpoints, such
as norm-based, PAC-Bayes based, and margin-based analysis. In this work, we
provide an interpretation of generalization from the perspective of quality of
internal representations of deep neural networks, based on neuroscientific
theories of how the human visual system creates invariant and untangled object
representations. Instead of providing theoretical bounds, we demonstrate
practical complexity measures which can be computed ad-hoc to uncover
generalization behaviour in deep models. We also provide a detailed description
of our solution that won the NeurIPS competition on Predicting Generalization
in Deep Learning held at NeurIPS 2020. An implementation of our solution is
available at https://github.com/parthnatekar/pgdl.
- Abstract(参考訳): ディープニューラルネットワークは、非常に過度にパラメータ化されているにもかかわらず、一般化することができる。
近年の研究では、この現象を様々な視点から検討し、ノルムベース、PACベイズベース、マージンベース分析など、これらの視点に基づく一般化誤差や一般化ギャップの予測値の境界について検討している。
本研究では,人間の視覚系が不変かつアンタングル化された物体表現をいかに生成するかという神経科学的理論に基づいて,ディープニューラルネットワークの内部表現の品質の観点から一般化の解釈を行う。
理論的な境界を与える代わりに、深層モデルにおける一般化の振る舞いを明らかにするためにアドホックに計算できる実用的な複雑性測度を示す。
我々はまた、NeurIPS 2020で開催されているDeep Learningの予測一般化に関するNeurIPSコンペティションで優勝したソリューションの詳細な説明も提供している。
このソリューションの実装はhttps://github.com/parthnatekar/pgdlで利用可能です。
関連論文リスト
- Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
無限深度および広帯域ニューラルネットワークの限界におけるエンスケールResNetについて検討する。
この結果から,遅延学習体制を超えた深層ResNetの一般化能力に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2024-03-14T21:48:00Z) - Sparsity-aware generalization theory for deep neural networks [12.525959293825318]
本稿では、ディープフィードフォワードReLUネットワークの一般化を解析するための新しいアプローチを提案する。
空間性と一般化の基本的なトレードオフを示す。
論文 参考訳(メタデータ) (2023-07-01T20:59:05Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - How You Start Matters for Generalization [26.74340246715699]
ニューラルネットワークの一般化は、その初期化に強く結びついていることが示される。
議論を呼んでいるフラットミニマ予想に反論する。
論文 参考訳(メタデータ) (2022-06-17T05:30:56Z) - Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural
Networks [13.518582483147325]
本稿では,トランスダクティブ推論の文脈におけるニューラルネットワークの性能を厳密に分析する。
本稿では, ブロックモデルに対するグラフ畳み込みネットワークの一般化特性について, トランスダクティブなRademacher複雑性が説明できることを示す。
論文 参考訳(メタデータ) (2021-12-07T20:06:23Z) - Intrinsic Dimension, Persistent Homology and Generalization in Neural
Networks [19.99615698375829]
一般化誤差は 'peristent homology dimension' (PHD) という概念で等価に有界であることを示す。
我々は,現代のディープニューラルネットワークの規模でPHDを推定する効率的なアルゴリズムを開発した。
実験の結果,提案手法はネットワークの固有次元を様々な設定で効率的に計算できることがわかった。
論文 参考訳(メタデータ) (2021-11-25T17:06:15Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
トレーニングネットワークの一般化能力を評価するための新しいフレームワークを提案する。
具体的には,一般化ギャップを正確に予測するための2つの新しい尺度を提案する。
PGDL(Predicting Generalization in Deep Learning)のNeurIPS 2020コンペティションにおけるタスクの大部分について、現在の最先端の指標よりも優れた予測スコアを得る。
論文 参考訳(メタデータ) (2021-06-09T01:37:36Z) - In Search of Robust Measures of Generalization [79.75709926309703]
我々は、一般化誤差、最適化誤差、過大なリスクのバウンダリを開発する。
経験的に評価すると、これらの境界の大部分は数値的に空白である。
我々は、分散ロバストネスの枠組みの中で、一般化対策を評価するべきであると論じる。
論文 参考訳(メタデータ) (2020-10-22T17:54:25Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
本稿では,NNを連鎖グラフ(CG)、フィードフォワードを近似推論手法として識別する別の解釈を提案する。
CG解釈は、確率的グラフィカルモデルのリッチな理論的枠組みの中で、各NNコンポーネントの性質を規定する。
我々は,CG解釈が様々なNN技術に対する新しい理論的支援と洞察を提供することを示す具体例を実例で示す。
論文 参考訳(メタデータ) (2020-06-30T14:46:08Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。