PAC-Bayesian risk bounds for fully connected deep neural network with Gaussian priors
- URL: http://arxiv.org/abs/2505.04341v1
- Date: Wed, 07 May 2025 11:42:18 GMT
- Title: PAC-Bayesian risk bounds for fully connected deep neural network with Gaussian priors
- Authors: The Tien Mai,
- Abstract summary: We show that fully connected Bayesian neural networks can achieve comparable convergence rates to sparse networks.<n>Our results hold for a broad class of practical activation functions that are Lipschitz continuous.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks (DNNs) have emerged as a powerful methodology with significant practical successes in fields such as computer vision and natural language processing. Recent works have demonstrated that sparsely connected DNNs with carefully designed architectures can achieve minimax estimation rates under classical smoothness assumptions. However, subsequent studies revealed that simple fully connected DNNs can achieve comparable convergence rates, challenging the necessity of sparsity. Theoretical advances in Bayesian neural networks (BNNs) have been more fragmented. Much of those work has concentrated on sparse networks, leaving the theoretical properties of fully connected BNNs underexplored. In this paper, we address this gap by investigating fully connected Bayesian DNNs with Gaussian prior using PAC-Bayes bounds. We establish upper bounds on the prediction risk for a probabilistic deep neural network method, showing that these bounds match (up to logarithmic factors) the minimax-optimal rates in Besov space, for both nonparametric regression and binary classification with logistic loss. Importantly, our results hold for a broad class of practical activation functions that are Lipschitz continuous.
Related papers
- Posterior concentrations of fully-connected Bayesian neural networks with general priors on the weights [3.5865188519566003]
We present a new approximation theory for non-sparse Deep Neural Networks (DNNs) with bounded parameters.
We show that BNNs with non-sparse general priors can achieve near-minimax optimal posterior concentration rates to the true model.
arXiv Detail & Related papers (2024-03-21T08:31:36Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Masked Bayesian Neural Networks : Theoretical Guarantee and its
Posterior Inference [1.2722697496405464]
We propose a new node-sparse BNN model which has good theoretical properties and is computationally feasible.
We prove that the posterior concentration rate to the true model is near minimax optimal and adaptive to the smoothness of the true model.
In addition, we develop a novel MCMC algorithm which makes the Bayesian inference of the node-sparse BNN model feasible in practice.
arXiv Detail & Related papers (2023-05-24T06:16:11Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
We study the expectation of a probabilistic neural network as a predictor by itself, focusing on the aggregation of binary activated neural networks with normal distributions over real-valued weights.
We show that the exact computation remains tractable for deep but narrow neural networks, thanks to a dynamic programming approach.
arXiv Detail & Related papers (2021-10-28T14:11:07Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Exact posterior distributions of wide Bayesian neural networks [51.20413322972014]
We show that the exact BNN posterior converges (weakly) to the one induced by the GP limit of the prior.
For empirical validation, we show how to generate exact samples from a finite BNN on a small dataset via rejection sampling.
arXiv Detail & Related papers (2020-06-18T13:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.