A Hierarchical Deep Actor-Critic Learning Method for Joint Distribution
System State Estimation
- URL: http://arxiv.org/abs/2012.02880v1
- Date: Fri, 4 Dec 2020 22:38:21 GMT
- Title: A Hierarchical Deep Actor-Critic Learning Method for Joint Distribution
System State Estimation
- Authors: Yuxuan Yuan, Kaveh Dehghanpour, Zhaoyu Wang, Fankun Bu
- Abstract summary: Real-time monitoring of customers at the grid-edge has become a critical task.
We present a novel hierarchical reinforcement learning-aided framework to achieve near real-time solutions.
- Score: 1.7205106391379026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to increasing penetration of volatile distributed photovoltaic (PV)
resources, real-time monitoring of customers at the grid-edge has become a
critical task. However, this requires solving the distribution system state
estimation (DSSE) jointly for both primary and secondary levels of distribution
grids, which is computationally complex and lacks scalability to large systems.
To achieve near real-time solutions for DSSE, we present a novel hierarchical
reinforcement learning-aided framework: at the first layer, a weighted least
squares (WLS) algorithm solves the DSSE over primary medium-voltage feeders; at
the second layer, deep actor-critic (A-C) modules are trained for each
secondary transformer using measurement residuals to estimate the states of
low-voltage circuits and capture the impact of PVs at the grid-edge. While the
A-C parameter learning process takes place offline, the trained A-C modules are
deployed online for fast secondary grid state estimation; this is the key
factor in scalability and computational efficiency of the framework. To
maintain monitoring accuracy, the two levels exchange boundary information with
each other at the secondary nodes, including transformer voltages (first layer
to second layer) and active/reactive total power injection (second layer to
first layer). This interactive information passing strategy results in a
closed-loop structure that is able to track optimal solutions at both layers in
few iterations. Moreover, our model can handle the topology changes using the
Jacobian matrices of the first layer. We have performed numerical experiments
using real utility data and feeder models to verify the performance of the
proposed framework.
Related papers
- RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
We propose a simple low-complexity TPC algorithm based on the deep unfolding of the iterative projected gradient (PGD) algorithm into layers of a deep neural network and learning the step-size parameters.
Performance evaluation in dense device-to-device (D2D) communication scenarios showed that the proposed method can achieve better performance than the iterative algorithm with more than a factor of 2 lower number of iterations.
arXiv Detail & Related papers (2023-06-20T19:51:21Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
We propose a convolutional broad learning system (ConvBLS) based on the spherical K-means (SKM) algorithm and two-stage multi-scale (TSMS) feature fusion.
Our proposed ConvBLS method is unprecedentedly efficient and effective.
arXiv Detail & Related papers (2023-04-01T04:16:12Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency [105.17746223041954]
Reinforcement learning in partially observed Markov decision processes (POMDPs) faces two challenges.
It often takes the full history to predict the future, which induces a sample complexity that scales exponentially with the horizon.
We propose a reinforcement learning algorithm named Embed to Control (ETC), which learns the representation at two levels while optimizing the policy.
arXiv Detail & Related papers (2022-05-26T16:34:46Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
We present a training and pruning method for ASR based on the connectionist temporal classification (CTC)
We show that a Transformer-CTC model can be pruned in various depth on demand, improving real-time factor from 0.005 to 0.002 on GPU.
arXiv Detail & Related papers (2021-06-17T02:40:18Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKM is a deep kernel method for the unsupervised learning of disentangled data representations.
We quantitatively evaluate the proposed method's effectiveness in disentangled feature learning.
arXiv Detail & Related papers (2020-11-25T11:40:10Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems.
It combines a novel, "degenerate" version of the prototypical policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode.
arXiv Detail & Related papers (2020-06-04T16:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.