A Survey on Deep Learning with Noisy Labels: How to train your model
when you cannot trust on the annotations?
- URL: http://arxiv.org/abs/2012.03061v1
- Date: Sat, 5 Dec 2020 15:45:20 GMT
- Title: A Survey on Deep Learning with Noisy Labels: How to train your model
when you cannot trust on the annotations?
- Authors: Filipe R. Cordeiro and Gustavo Carneiro
- Abstract summary: Several approaches have been proposed to improve the training of deep learning models in the presence of noisy labels.
This paper presents a survey on the main techniques in literature, in which we classify the algorithm in the following groups: robust losses, sample weighting, sample selection, meta-learning, and combined approaches.
- Score: 21.562089974755125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noisy Labels are commonly present in data sets automatically collected from
the internet, mislabeled by non-specialist annotators, or even specialists in a
challenging task, such as in the medical field. Although deep learning models
have shown significant improvements in different domains, an open issue is
their ability to memorize noisy labels during training, reducing their
generalization potential. As deep learning models depend on correctly labeled
data sets and label correctness is difficult to guarantee, it is crucial to
consider the presence of noisy labels for deep learning training. Several
approaches have been proposed in the literature to improve the training of deep
learning models in the presence of noisy labels. This paper presents a survey
on the main techniques in literature, in which we classify the algorithm in the
following groups: robust losses, sample weighting, sample selection,
meta-learning, and combined approaches. We also present the commonly used
experimental setup, data sets, and results of the state-of-the-art models.
Related papers
- Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Unleashing the Potential of Regularization Strategies in Learning with
Noisy Labels [65.92994348757743]
We demonstrate that a simple baseline using cross-entropy loss, combined with widely used regularization strategies can outperform state-of-the-art methods.
Our findings suggest that employing a combination of regularization strategies can be more effective than intricate algorithms in tackling the challenges of learning with noisy labels.
arXiv Detail & Related papers (2023-07-11T05:58:20Z) - MILD: Modeling the Instance Learning Dynamics for Learning with Noisy
Labels [19.650299232829546]
We propose an iterative selection approach based on the Weibull mixture model to identify clean data.
In particular, we measure the difficulty of memorization and memorize for each instance via the transition times between being misclassified and being memorized.
Our strategy outperforms existing noisy-label learning methods.
arXiv Detail & Related papers (2023-06-20T14:26:53Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - Representation Learning for the Automatic Indexing of Sound Effects
Libraries [79.68916470119743]
We show that a task-specific but dataset-independent representation can successfully address data issues such as class imbalance, inconsistent class labels, and insufficient dataset size.
Detailed experimental results show the impact of metric learning approaches and different cross-dataset training methods on representational effectiveness.
arXiv Detail & Related papers (2022-08-18T23:46:13Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
We propose a robust learning method to perform robust visual sentiment analysis.
Our method relies on an external memory to aggregate and filter noisy labels during training.
We establish a benchmark for visual sentiment analysis with label noise using publicly available datasets.
arXiv Detail & Related papers (2021-09-15T18:18:28Z) - Learning from Noisy Labels for Entity-Centric Information Extraction [17.50856935207308]
We propose a simple co-regularization framework for entity-centric information extraction.
These models are jointly optimized with task-specific loss, and are regularized to generate similar predictions.
In the end, we can take any of the trained models for inference.
arXiv Detail & Related papers (2021-04-17T22:49:12Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.