MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring
- URL: http://arxiv.org/abs/2012.03087v1
- Date: Sat, 5 Dec 2020 17:40:05 GMT
- Title: MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring
- Authors: Charles N. C. Freitas, Filipe R. Cordeiro and Valmir Macario
- Abstract summary: The absence of food monitoring has contributed significantly to the increase in the population's weight.
Some solutions have been proposed in computer vision to recognize food images, but few are specialized in nutritional monitoring.
This work presents the development of an intelligent system that classifies and segments food presented in images to help the automatic monitoring of user diet and nutritional intake.
- Score: 1.5469452301122173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The absence of food monitoring has contributed significantly to the increase
in the population's weight. Due to the lack of time and busy routines, most
people do not control and record what is consumed in their diet. Some solutions
have been proposed in computer vision to recognize food images, but few are
specialized in nutritional monitoring. This work presents the development of an
intelligent system that classifies and segments food presented in images to
help the automatic monitoring of user diet and nutritional intake. This work
shows a comparative study of state-of-the-art methods for image classification
and segmentation, applied to food recognition. In our methodology, we compare
the FCN, ENet, SegNet, DeepLabV3+, and Mask RCNN algorithms. We build a dataset
composed of the most consumed Brazilian food types, containing nine classes and
a total of 1250 images. The models were evaluated using the following metrics:
Intersection over Union, Sensitivity, Specificity, Balanced Precision, and
Positive Predefined Value. We also propose an system integrated into a mobile
application that automatically recognizes and estimates the nutrients in a
meal, assisting people with better nutritional monitoring. The proposed
solution showed better results than the existing ones in the market. The
dataset is publicly available at the following link
http://doi.org/10.5281/zenodo.4041488
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - An Intelligent Passive Food Intake Assessment System with Egocentric
Cameras [14.067860492694251]
Malnutrition is a major public health concern in low-and-middle-income countries (LMICs)
We propose to implement an intelligent passive food intake assessment system via egocentric cameras.
Our method is able to reliably monitor food intake and give feedback on users' eating behaviour.
arXiv Detail & Related papers (2021-05-07T09:47:51Z) - Saliency-Aware Class-Agnostic Food Image Segmentation [10.664526852464812]
We propose a class-agnostic food image segmentation method.
Using information from both the before and after eating images, we can segment food images by finding the salient missing objects.
Our method is validated on food images collected from a dietary study.
arXiv Detail & Related papers (2021-02-13T08:05:19Z) - An End-to-End Food Image Analysis System [8.622335099019214]
We propose an image-based food analysis framework that integrates food localization, classification and portion size estimation.
Our proposed framework is end-to-end, i.e., the input can be an arbitrary food image containing multiple food items.
Our framework is evaluated on a real life food image dataset collected from a nutrition feeding study.
arXiv Detail & Related papers (2021-02-01T05:36:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.