論文の概要: RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control
- arxiv url: http://arxiv.org/abs/2012.03094v1
- Date: Sat, 5 Dec 2020 18:30:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 11:59:27.541780
- Title: RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control
- Title(参考訳): RLOC:強化学習と最適制御を用いた地形認識型脚移動
- Authors: Siddhant Gangapurwala, Mathieu Geisert, Romeo Orsolino, Maurice Fallon
and Ioannis Havoutis
- Abstract要約: 四元計画と制御のためのモデルベースとデータ駆動の統一的アプローチを提案する。
センサ情報と所望のベース速度コマンドを、強化学習ポリシーを用いて足踏み計画にマッピングする。
我々は、複雑な四足歩行システムであるANYmal Bの枠組みを訓練し、再訓練を必要とせず、より大きく重いロボットであるANYmal Cへの移動性を示す。
- 参考スコア(独自算出の注目度): 6.669503016190925
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a unified model-based and data-driven approach for quadrupedal
planning and control to achieve dynamic locomotion over uneven terrain. We
utilize on-board proprioceptive and exteroceptive feedback to map sensory
information and desired base velocity commands into footstep plans using a
reinforcement learning (RL) policy trained in simulation over a wide range of
procedurally generated terrains. When ran online, the system tracks the
generated footstep plans using a model-based controller. We evaluate the
robustness of our method over a wide variety of complex terrains. It exhibits
behaviors which prioritize stability over aggressive locomotion. Additionally,
we introduce two ancillary RL policies for corrective whole-body motion
tracking and recovery control. These policies account for changes in physical
parameters and external perturbations. We train and evaluate our framework on a
complex quadrupedal system, ANYmal version B, and demonstrate transferability
to a larger and heavier robot, ANYmal C, without requiring retraining.
- Abstract(参考訳): 本研究では,不均一な地形上での動的移動を実現するために,四面体計画と制御のためのモデルベースとデータ駆動の統一アプローチを提案する。
本研究は,広範囲の手続き的に発生する地形のシミュレーションで訓練された強化学習(RL)ポリシーを用いて,センサ情報と所望のベースベロシティコマンドを足踏み計画にマッピングする。
オンラインで実行されると、システムはモデルベースのコントローラを使って生成されたステッププランを追跡する。
我々は,様々な複雑な地形におけるロバスト性を評価する。
攻撃的な移動よりも安定性を優先する行動を示す。
さらに,全身運動追跡と回復制御のための2つの補助的RLポリシーを導入する。
これらのポリシーは、物理的パラメータと外部摂動の変化を規定している。
我々は,複雑な四足歩行システムであるanymalバージョンb上でフレームワークを訓練し,評価し,再訓練を必要とせず,より大型で重いanymal cへの移動性を示す。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - WROOM: An Autonomous Driving Approach for Off-Road Navigation [17.74237088460657]
オフロード環境における自動運転車のためのエンドツーエンド強化学習システム(RL)を設計する。
ルールベースのコントローラを模倣してエージェントを温め、PPO(Proximal Policy Optimization)を利用してポリシーを改善する。
オフロード走行シナリオを再現する新しいシミュレーション環境を提案し,本提案手法を実車に展開する。
論文 参考訳(メタデータ) (2024-04-12T23:55:59Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - DTC: Deep Tracking Control [16.2850135844455]
本研究では,両世界の強靭性,フット配置精度,地形の一般化を両世界の利点と組み合わせたハイブリッド制御アーキテクチャを提案する。
深層ニューラルネットワークポリシは、最適化された足場を追跡することを目的として、シミュレーションでトレーニングされている。
モデルベースに比べて滑りやすい地盤や変形可能な地盤が存在する場合の強靭性を示す。
論文 参考訳(メタデータ) (2023-09-27T07:57:37Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Reinforcement Learning with Evolutionary Trajectory Generator: A General
Approach for Quadrupedal Locomotion [29.853927354893656]
進化的足跡生成器を含む新しいRLに基づくアプローチを提案する。
ジェネレータは、与えられたタスクの出力軌跡の形状を継続的に最適化し、ポリシー学習のガイドとなる多様な動作前を提供する。
我々は,12-DoF四足歩行ロボットのシミュレーションで学習したコントローラをデプロイし,効率の良い歩行で挑戦的なシナリオを横切ることに成功した。
論文 参考訳(メタデータ) (2021-09-14T02:51:50Z) - GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments with
a Centroidal Model [18.66472547798549]
四足歩行のロバスト制御ポリシを生成するために,遠心モデルを用いてモデルフリー強化学習を効果的に利用できることを示す。
本手法は, ステップストーン移動, 2脚のインプレースバランス, バランスビーム移動, sim-to-real移動を, さらなる適応を伴わずに実現可能であることを示す。
論文 参考訳(メタデータ) (2021-04-20T05:55:13Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。