Esophageal Tumor Segmentation in CT Images using Dilated Dense Attention
Unet (DDAUnet)
- URL: http://arxiv.org/abs/2012.03242v3
- Date: Wed, 24 Mar 2021 12:59:55 GMT
- Title: Esophageal Tumor Segmentation in CT Images using Dilated Dense Attention
Unet (DDAUnet)
- Authors: Sahar Yousefi, Hessam Sokooti, Mohamed S. Elmahdy, Irene M. Lips,
Mohammad T. Manzuri Shalmani, Roel T. Zinkstok, Frank J.W.M. Dankers, Marius
Staring
- Abstract summary: We present a fully automatic end-to-end esophageal tumor segmentation method based on convolutional neural networks (CNNs)
The proposed network, called Dilated Dense Attention Unet (DDAUnet), leverages spatial and channel attention in each dense block to selectively concentrate on determinant feature maps and regions.
- Score: 3.0929226049096217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manual or automatic delineation of the esophageal tumor in CT images is known
to be very challenging. This is due to the low contrast between the tumor and
adjacent tissues, the anatomical variation of the esophagus, as well as the
occasional presence of foreign bodies (e.g. feeding tubes). Physicians
therefore usually exploit additional knowledge such as endoscopic findings,
clinical history, additional imaging modalities like PET scans. Achieving his
additional information is time-consuming, while the results are error-prone and
might lead to non-deterministic results. In this paper we aim to investigate if
and to what extent a simplified clinical workflow based on CT alone, allows one
to automatically segment the esophageal tumor with sufficient quality. For this
purpose, we present a fully automatic end-to-end esophageal tumor segmentation
method based on convolutional neural networks (CNNs). The proposed network,
called Dilated Dense Attention Unet (DDAUnet), leverages spatial and channel
attention gates in each dense block to selectively concentrate on determinant
feature maps and regions. Dilated convolutional layers are used to manage GPU
memory and increase the network receptive field. We collected a dataset of 792
scans from 288 distinct patients including varying anatomies with \mbox{air
pockets}, feeding tubes and proximal tumors. Repeatability and reproducibility
studies were conducted for three distinct splits of training and validation
sets. The proposed network achieved a $\mathrm{DSC}$ value of $0.79 \pm 0.20$,
a mean surface distance of $5.4 \pm 20.2mm$ and $95\%$ Hausdorff distance of
$14.7 \pm 25.0mm$ for 287 test scans, demonstrating promising results with a
simplified clinical workflow based on CT alone. Our code is publicly available
via \url{https://github.com/yousefis/DenseUnet_Esophagus_Segmentation}.
Related papers
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Thoracic Cartilage Ultrasound-CT Registration using Dense Skeleton Graph [49.11220791279602]
It is challenging to accurately map planned paths from a generic atlas to individual patients, particularly for thoracic applications.
A graph-based non-rigid registration is proposed to enable transferring planned paths from the atlas to the current setup.
arXiv Detail & Related papers (2023-07-07T18:57:21Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks.
We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68%, and 92.45% respectively.
arXiv Detail & Related papers (2023-06-25T14:28:08Z) - CACTUSS: Common Anatomical CT-US Space for US examinations [36.45569352490318]
Abdominal aortic aneurysm (AAA) is a vascular disease in which a section of the aorta enlarges, weakening its walls and potentially rupturing the vessel.
Recent abdominal CT datasets have been successfully utilized to train deep neural networks for automatic aorta segmentation.
CACTUSS acts as a virtual bridge between CT and US modalities to enable automatic AAA screening sonography.
arXiv Detail & Related papers (2022-07-18T14:05:25Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
arXiv Detail & Related papers (2021-11-17T17:50:18Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management [21.788423806147378]
We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging.
We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis.
arXiv Detail & Related papers (2020-12-08T19:38:01Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.