Segmentation of Lung Tumor from CT Images using Deep Supervision
- URL: http://arxiv.org/abs/2111.09262v1
- Date: Wed, 17 Nov 2021 17:50:18 GMT
- Title: Segmentation of Lung Tumor from CT Images using Deep Supervision
- Authors: Farhanaz Farheen, Md. Salman Shamil, Nabil Ibtehaz, M. Sohel Rahman
- Abstract summary: Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
- Score: 0.8733639720576208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer is a leading cause of death in most countries of the world. Since
prompt diagnosis of tumors can allow oncologists to discern their nature, type
and the mode of treatment, tumor detection and segmentation from CT Scan images
is a crucial field of study worldwide. This paper approaches lung tumor
segmentation by applying two-dimensional discrete wavelet transform (DWT) on
the LOTUS dataset for more meticulous texture analysis whilst integrating
information from neighboring CT slices before feeding them to a Deeply
Supervised MultiResUNet model. Variations in learning rates, decay and
optimization algorithms while training the network have led to different dice
co-efficients, the detailed statistics of which have been included in this
paper. We also discuss the challenges in this dataset and how we opted to
overcome them. In essence, this study aims to maximize the success rate of
predicting tumor regions from two dimensional CT Scan slices by experimenting
with a number of adequate networks, resulting in a dice co-efficient of 0.8472.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - ISA-Net: Improved spatial attention network for PET-CT tumor
segmentation [22.48294544919023]
We propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT)
We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors.
We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset.
arXiv Detail & Related papers (2022-11-04T04:15:13Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data [2.2515303891664358]
Tumor segmentation in multimodal medical images has seen a growing trend towards deep learning based methods.
We propose a simultaneous co-segmentation method, which enables multimodal feature learning through modality-specific encoder and decoder branches.
We demonstrate the effectiveness of our approach on public soft tissue sarcoma data, which comprises MRI (T1 and T2 sequence) and PET/CT scans.
arXiv Detail & Related papers (2020-08-28T09:15:42Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Experimenting with Convolutional Neural Network Architectures for the
automatic characterization of Solitary Pulmonary Nodules' malignancy rating [0.0]
Early and automatic diagnosis of Solitary Pulmonary Nodules (SPN) in Computer Tomography (CT) chest scans can provide early treatment as well as doctor liberation from time-consuming procedures.
In this study, we consider the problem of diagnostic classification between benign and malignant lung nodules in CT images derived from a PET/CT scanner.
More specifically, we intend to develop experimental Convolutional Neural Network (CNN) architectures and conduct experiments, by tuning their parameters, to investigate their behavior, and to define the optimal setup for the accurate classification.
arXiv Detail & Related papers (2020-03-15T11:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.