Select, Label, and Mix: Learning Discriminative Invariant Feature
Representations for Partial Domain Adaptation
- URL: http://arxiv.org/abs/2012.03358v1
- Date: Sun, 6 Dec 2020 19:29:32 GMT
- Title: Select, Label, and Mix: Learning Discriminative Invariant Feature
Representations for Partial Domain Adaptation
- Authors: Aadarsh Sahoo, Rameswar Panda, Rogerio Feris, Kate Saenko, Abir Das
- Abstract summary: We develop a "Select, Label, and Mix" (SLM) framework to learn discriminative invariant feature representations for partial domain adaptation.
First, we present a simple yet efficient "select" module that automatically filters out outlier source samples to avoid negative transfer.
Second, the "label" module iteratively trains the classifier using both the labeled source domain data and the generated pseudo-labels for the target domain to enhance the discriminability of the latent space.
- Score: 55.73722120043086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial domain adaptation which assumes that the unknown target label space
is a subset of the source label space has attracted much attention in computer
vision. Despite recent progress, existing methods often suffer from three key
problems: negative transfer, lack of discriminability and domain invariance in
the latent space. To alleviate the above issues, we develop a novel 'Select,
Label, and Mix' (SLM) framework that aims to learn discriminative invariant
feature representations for partial domain adaptation. First, we present a
simple yet efficient "select" module that automatically filters out the outlier
source samples to avoid negative transfer while aligning distributions across
both domains. Second, the "label" module iteratively trains the classifier
using both the labeled source domain data and the generated pseudo-labels for
the target domain to enhance the discriminability of the latent space. Finally,
the "mix" module utilizes domain mixup regularization jointly with the other
two modules to explore more intrinsic structures across domains leading to a
domain-invariant latent space for partial domain adaptation. Extensive
experiments on several benchmark datasets demonstrate the superiority of our
proposed framework over state-of-the-art methods.
Related papers
- Multisource Semisupervised Adversarial Domain Generalization Network for
Cross-Scene Sea-Land Clutter Classification [7.258979105586101]
Real-time predictions of seatextendash land clutter with existing distribution discrepancies are crucial.
This article proposes a novel Multisource Semisupervised Adversarial Domain Generalization Network (MSADGN) for cross-scene seatextendash land clutter classification.
MSADGN consists of three modules: domain-related pseudolabeling module, domain-invariant module, and domain-specific module.
arXiv Detail & Related papers (2024-02-09T10:50:28Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a small number of target labels available.
Existing SSDA work fails to make full use of label information from both source and target domains for feature alignment across domains.
This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood Expansion (IDMNE), to tackle this issue.
arXiv Detail & Related papers (2024-01-21T10:20:46Z) - Domain-Invariant Feature Alignment Using Variational Inference For
Partial Domain Adaptation [6.04077629908308]
The proposed technique delivers superior and comparable accuracy to existing methods.
The experimental findings in numerous cross-domain classification tasks demonstrate that the proposed technique delivers superior and comparable accuracy to existing methods.
arXiv Detail & Related papers (2022-12-03T10:39:14Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA) has propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains.
Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction.
We propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier.
arXiv Detail & Related papers (2022-08-02T01:38:37Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain.
Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature.
In this paper, we develop this work on the method of class-level alignment.
arXiv Detail & Related papers (2021-09-14T09:23:27Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.