論文の概要: Source Separation and Depthwise Separable Convolutions for Computer
Audition
- arxiv url: http://arxiv.org/abs/2012.03359v1
- Date: Sun, 6 Dec 2020 19:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 13:50:14.046346
- Title: Source Separation and Depthwise Separable Convolutions for Computer
Audition
- Title(参考訳): 音源分離とDepthwise Separable Convolutions for Computer Audition
- Authors: Gabriel Mersy and Jin Hong Kuan
- Abstract要約: 我々は,電子ダンス音楽データセットを用いて,深度的に分離可能な畳み込みニューラルネットワークを訓練する。
ソース分離は,標準の単一スペクトログラム手法と比較して,限られたデータ設定における分類性能を向上させることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given recent advances in deep music source separation, we propose a feature
representation method that combines source separation with a state-of-the-art
representation learning technique that is suitably repurposed for computer
audition (i.e. machine listening). We train a depthwise separable convolutional
neural network on a challenging electronic dance music (EDM) data set and
compare its performance to convolutional neural networks operating on both
source separated and standard spectrograms. It is shown that source separation
improves classification performance in a limited-data setting compared to the
standard single spectrogram approach.
- Abstract(参考訳): 近年の深層音楽ソース分離の進展を踏まえ、音源分離と、コンピュータオーディション(すなわち、コンピュータオーディション)に好適に活用される最先端表現学習技術を組み合わせた特徴表現手法を提案する。
マシンリスニング)。
我々は、電子ダンス音楽(EDM)データセット上で深度的に分離可能な畳み込みニューラルネットワークを訓練し、その性能をソース分離および標準スペクトログラムの両方で動作する畳み込みニューラルネットワークと比較する。
ソース分離は,標準の単一スペクトログラム手法と比較して,限られたデータ設定における分類性能を向上させる。
関連論文リスト
- Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - High-Quality Visually-Guided Sound Separation from Diverse Categories [56.92841782969847]
DAVISは拡散に基づくオーディオ視覚分離フレームワークである。
分離された音をガウス雑音から直接合成し、オーディオミックスと視覚情報の両方に条件付けする。
AVEおよびMUSICデータセット上で,DAVISを既存の最先端の識別的音声視覚分離法と比較した。
論文 参考訳(メタデータ) (2023-07-31T19:41:49Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
視覚誘導音源分離は、視覚特徴抽出、マルチモーダル特徴融合、音響信号処理の3つの部分からなる。
本稿では,この課題をパラメータ調和とより効果的な方法で解決するために,AVPC(Audio-visual predictive coding)を提案する。
さらに、同一音源の2つの音声視覚表現を共予測することにより、AVPCのための効果的な自己教師型学習戦略を開発する。
論文 参考訳(メタデータ) (2023-06-19T03:10:57Z) - AudioSlots: A slot-centric generative model for audio separation [26.51135156983783]
本稿では,音声領域におけるブラインド音源分離のためのスロット中心生成モデルであるAudioSlotsを提案する。
我々は、置換同変損失関数を用いて、エンド・ツー・エンドでモデルを訓練する。
We results on Libri2Mix speech separation is a proof of concept that this approach shows promise。
論文 参考訳(メタデータ) (2023-05-09T16:28:07Z) - Hybrid Y-Net Architecture for Singing Voice Separation [0.0]
提案アーキテクチャは、スペクトルと波形の両方の領域から特徴を抽出することで、エンドツーエンドのハイブリッドソース分離を行う。
U-NetアーキテクチャにインスパイアされたY-Netは、スペクトルマスクを予測し、混合信号から発声源を分離する。
論文 参考訳(メタデータ) (2023-03-05T07:54:49Z) - Visual Scene Graphs for Audio Source Separation [65.47212419514761]
視覚的に誘導された音源分離のための最先端のアプローチは、典型的には楽器のような特徴的な音を持つ音源を仮定する。
本稿では,シーンの視覚構造をグラフとして埋め込んだ新しい深層学習モデルであるAudio Visual Scene Graph Segmenter (AVSGS)を提案する。
我々のパイプラインは、人工混合音から視覚グラフを用いて音源を分離する自己教師タスクにより、エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2021-09-24T13:40:51Z) - Training a Deep Neural Network via Policy Gradients for Blind Source
Separation in Polyphonic Music Recordings [1.933681537640272]
音響信号における楽器の音の盲点分離法を提案する。
パラメトリックモデルを用いて個々の音色を記述し、辞書を訓練し、高調波の相対振幅を捉える。
提案アルゴリズムは,様々な音声サンプルに対して,特に低干渉で高品質な結果が得られる。
論文 参考訳(メタデータ) (2021-07-09T06:17:04Z) - Deep Convolutional and Recurrent Networks for Polyphonic Instrument
Classification from Monophonic Raw Audio Waveforms [30.3491261167433]
サウンドイベント検出とオーディオ分類タスクは、伝統的にスペクトログラムなどのオーディオ信号の時間周波数表現を通じて対処されます。
効率的な特徴抽出器としてのディープニューラルネットワークは、分類目的にオーディオ信号を直接使用可能にする。
生の波形を深層学習モデルに入力するだけで,ポリフォニック・オーディオで楽器を認識する。
論文 参考訳(メタデータ) (2021-02-13T13:44:46Z) - Fast accuracy estimation of deep learning based multi-class musical
source separation [79.10962538141445]
本稿では,ニューラルネットワークのトレーニングやチューニングを行うことなく,任意のデータセットにおける楽器の分離性を評価する手法を提案する。
理想的な比マスクを持つオラクルの原理に基づいて、我々の手法は最先端のディープラーニング手法の分離性能を推定するための優れたプロキシである。
論文 参考訳(メタデータ) (2020-10-19T13:05:08Z) - Spatial and spectral deep attention fusion for multi-channel speech
separation using deep embedding features [60.20150317299749]
マルチチャネルディープクラスタリング(MDC)は、音声分離に優れた性能を得た。
本研究では,スペクトルおよび空間的特徴の重みを動的に制御し,それらを深く結合するディープ・アテンション・フュージョン法を提案する。
実験結果から,提案手法はMDCベースラインよりも優れ,理想的なバイナリマスク(IBM)よりも優れていた。
論文 参考訳(メタデータ) (2020-02-05T03:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。