論文の概要: The Neural Coding Framework for Learning Generative Models
- arxiv url: http://arxiv.org/abs/2012.03405v3
- Date: Fri, 25 Dec 2020 01:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:41:12.009697
- Title: The Neural Coding Framework for Learning Generative Models
- Title(参考訳): 生成モデル学習のためのニューラルコーディングフレームワーク
- Authors: Alexander Ororbia and Daniel Kifer
- Abstract要約: 本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
- 参考スコア(独自算出の注目度): 91.0357317238509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural generative models can be used to learn complex probability
distributions from data, to sample from them, and to produce probability
density estimates. We propose a novel neural generative model inspired by the
theory of predictive processing in the brain. According to predictive
processing theory, the neurons in the brain form a hierarchy in which neurons
in one level form expectations about sensory inputs from another level. These
neurons update their local models based on differences between their
expectations and the observed signals. In a similar way, artificial neurons in
our generative model predict what neighboring neurons will do, and adjust their
parameters based on how well the predictions matched reality. This neural
generative model performs very well in practice. On a variety of benchmark
datasets and metrics, it either remains competitive with or significantly
outperforms other generative models with similar functionality (such as the
variational auto-encoder).
- Abstract(参考訳): ニューラル生成モデルは、データから複雑な確率分布を学習し、それらからサンプリングし、確率密度推定を生成するために使うことができる。
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
予測処理理論によれば、脳のニューロンは、あるレベルのニューロンが別のレベルの感覚入力に対する期待を形成する階層を形成する。
これらのニューロンは、期待値と観測信号の違いに基づいて局所的なモデルを更新する。
同様に、我々の生成モデルの人工ニューロンは、隣のニューロンが何をするかを予測し、その予測が現実とどのように一致しているかに基づいてパラメータを調整する。
この神経生成モデルは実際非常によく機能する。
さまざまなベンチマークデータセットやメトリクスでは、同様の機能を持つ他の生成モデル(例えば変分オートエンコーダ)と競合するか、大幅に上回っている。
関連論文リスト
- Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - A Spectral Theory of Neural Prediction and Alignment [8.65717258105897]
我々は、回帰からモデルと対象のスペクトル特性への一般化誤差を関連づける最近の理論的枠組みを用いる。
我々は、視覚的皮質活動を予測するディープニューラルネットワークを多数テストし、回帰によって測定された低ニューラルネットワーク予測誤差をもたらす複数のタイプのジオメトリーが存在することを示す。
論文 参考訳(メタデータ) (2023-09-22T12:24:06Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
システム神経科学は、単一ニューロンのチューニング曲線と集団活動の分析を特徴とする2つの相補的な神経データ観に依存している。
これらの2つの視点は、潜伏変数とニューラルアクティビティの関係を制約するニューラル潜伏変数モデルにおいてエレガントに結合する。
ニューラルチューニング曲線にまたがる機能共有を提案し、性能を大幅に改善し、より良い最適化を実現する。
論文 参考訳(メタデータ) (2022-10-06T18:37:49Z) - Supervised Parameter Estimation of Neuron Populations from Multiple
Firing Events [3.2826301276626273]
本研究では,一対のスパイキング系列とパラメータラベルからなる学習セットから,ニューロン集団のパラメータを自動的に学習する手法について,教師あり学習を通して検討した。
我々は、ニューロンモデルを用いて、異なるパラメータ設定での計算において多くのニューロン集団をシミュレートする。
次に、遺伝的検索、ベイズ逐次推定、ランダムウォーク近似モデルなどの古典的手法と比較する。
論文 参考訳(メタデータ) (2022-10-02T03:17:05Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。