論文の概要: Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE
- arxiv url: http://arxiv.org/abs/2011.04798v1
- Date: Mon, 9 Nov 2020 22:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 00:53:54.762495
- Title: Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE
- Title(参考訳): pi-VAEを用いた高次元神経活動の学習可能・解釈可能潜在モデル
- Authors: Ding Zhou, Xue-Xin Wei
- Abstract要約: 本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
- 参考スコア(独自算出の注目度): 10.529943544385585
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The ability to record activities from hundreds of neurons simultaneously in
the brain has placed an increasing demand for developing appropriate
statistical techniques to analyze such data. Recently, deep generative models
have been proposed to fit neural population responses. While these methods are
flexible and expressive, the downside is that they can be difficult to
interpret and identify. To address this problem, we propose a method that
integrates key ingredients from latent models and traditional neural encoding
models. Our method, pi-VAE, is inspired by recent progress on identifiable
variational auto-encoder, which we adapt to make appropriate for neuroscience
applications. Specifically, we propose to construct latent variable models of
neural activity while simultaneously modeling the relation between the latent
and task variables (non-neural variables, e.g. sensory, motor, and other
externally observable states). The incorporation of task variables results in
models that are not only more constrained, but also show qualitative
improvements in interpretability and identifiability. We validate pi-VAE using
synthetic data, and apply it to analyze neurophysiological datasets from rat
hippocampus and macaque motor cortex. We demonstrate that pi-VAE not only fits
the data better, but also provides unexpected novel insights into the structure
of the neural codes.
- Abstract(参考訳): 脳内の数百のニューロンから同時に活動を記録する能力は、そのようなデータを分析するための適切な統計技術を開発する必要性が高まっている。
近年,神経集団応答に適合する深層生成モデルが提案されている。
これらの手法は柔軟で表現力があるが、欠点は解釈や識別が難しいことである。
この問題に対処するために,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
提案手法であるpi-vaeは,神経科学の応用に適するように適応した,同定可能な変分オートエンコーダの最近の進歩に触発されたものである。
具体的には、潜在変数とタスク変数(感覚、運動、その他の外部観測可能な状態など)の関係を同時にモデル化しながら、神経活動の潜在変数モデルを構築することを提案する。
タスク変数の組み込みは、より制約されたモデルをもたらすだけでなく、解釈可能性と識別可能性の質的改善を示す。
合成データを用いてpi-vaeを検証し,ラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
我々は、pi-VAEがデータに適合するだけでなく、ニューラルネットワークの構造に関する予期せぬ新しい洞察を提供することを示した。
関連論文リスト
- BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
本稿では,特権的知識蒸留による行動誘導型ニューラル人口動態モデリングフレームワークBLENDを提案する。
特権情報として行動を考えることにより、行動観察(私的特徴)と神経活動(正規特徴)の両方を入力として扱う教師モデルを訓練する。
学生モデルは神経活動のみを用いて蒸留される。
論文 参考訳(メタデータ) (2024-10-02T12:45:59Z) - Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes [1.9544534628180867]
本稿では,条件付き生成モデリングの進歩を生かしたニューラルデータ解析手法を提案する。
我々は,高情報付きコードに基づくニューラル・オブザーバ生成と呼ばれるモデルを時系列ニューラル・データに適用する。
VAEベースのシーケンシャルオートエンコーダと比較して、GNOCCHIは、鍵となる振る舞い変数に関してより明確に構造化され、よりゆがみのある高品質な潜在空間を学習する。
論文 参考訳(メタデータ) (2024-07-30T21:07:09Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
本稿では,ニューラルベイズ推定を拡張して,実験データと対象変数空間との直接マッピングを学習する手法を提案する。
我々の研究は、リカレントニューラルネットワークとシミュレーションベースの推論を組み合わせることで、潜在変数配列を特定することで、研究者がより広範な認知モデルにアクセスできるようになることを強調している。
論文 参考訳(メタデータ) (2024-06-20T21:13:39Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Simple and complex spiking neurons: perspectives and analysis in a
simple STDP scenario [0.7829352305480283]
スパイキングニューラルネットワーク(SNN)は、生物学や神経科学にヒントを得て、高速で効率的な学習システムを構築する。
この研究は、文学における様々なニューロンモデルを考察し、単変数で効率的な計算ニューロンモデルを選択し、様々な種類の複雑さを提示する。
我々は, LIF, Quadratic I&F (QIF) および Exponential I&F (EIF) の3つの単純なI&Fニューロンモデルの比較研究を行い, より複雑なモデルの使用によってシステムの性能が向上するかどうかを検証した。
論文 参考訳(メタデータ) (2022-06-28T10:01:51Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。