Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
- URL: http://arxiv.org/abs/2012.03501v1
- Date: Mon, 7 Dec 2020 07:51:23 GMT
- Title: Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
- Authors: Taehyeon Kim, Jaeyeon Ahn, Nakyil Kim, Seyoung Yun
- Abstract summary: This paper describes the approach of team KAIST OSI in a step-wise manner, which outperforms the baseline algorithms by up to +20.39%.
In a similar vein, we combine the methodology of Bayesian and multi-armed bandit,(MAB) approach to select the values with the consideration of the variable types.
Empirical evaluations demonstrate that our method outperforms the existing methods across different tasks.
- Score: 9.860437640748113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the machine learning algorithms, the choice of the hyperparameter is often
an art more than a science, requiring labor-intensive search with expert
experience. Therefore, automation on hyperparameter optimization to exclude
human intervention is a great appeal, especially for the black-box functions.
Recently, there have been increasing demands of solving such concealed tasks
for better generalization, though the task-dependent issue is not easy to
solve. The Black-Box Optimization challenge (NeurIPS 2020) required competitors
to build a robust black-box optimizer across different domains of standard
machine learning problems. This paper describes the approach of team KAIST OSI
in a step-wise manner, which outperforms the baseline algorithms by up to
+20.39%. We first strengthen the local Bayesian search under the concept of
region reliability. Then, we design a combinatorial kernel for a Gaussian
process kernel. In a similar vein, we combine the methodology of Bayesian and
multi-armed bandit,(MAB) approach to select the values with the consideration
of the variable types; the real and integer variables are with Bayesian, while
the boolean and categorical variables are with MAB. Empirical evaluations
demonstrate that our method outperforms the existing methods across different
tasks.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
optimizing discrete black-box functions is key in several domains, e.g. protein engineering and drug design.
We develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black-box functions.
These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries.
arXiv Detail & Related papers (2024-06-07T08:39:40Z) - BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems [1.204357447396532]
Novelty search (NS) refers to a class of exploration algorithms that automatically uncover diverse system behaviors through simulations or experiments.
We propose a Bayesian optimization inspired algorithm for sample-efficient NS that is specifically designed for such expensive black-box systems.
We show that our approach greatly outperforms existing NS algorithms by finding substantially larger sets of diverse behaviors under limited sample budgets.
arXiv Detail & Related papers (2024-06-05T20:23:52Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - Efficient Bayesian Optimization with Deep Kernel Learning and
Transformer Pre-trained on Multiple Heterogeneous Datasets [9.510327380529892]
We propose a simple approach to pre-train a surrogate, which is a Gaussian process (GP) with a kernel defined on deep features learned from a Transformer-based encoder.
Experiments on both synthetic and real benchmark problems demonstrate the effectiveness of our proposed pre-training and transfer BO strategy.
arXiv Detail & Related papers (2023-08-09T01:56:10Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.