A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty
- URL: http://arxiv.org/abs/2202.12848v1
- Date: Fri, 25 Feb 2022 17:45:26 GMT
- Title: A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty
- Authors: J.Qing, I. Couckuyt, T. Dhaene
- Abstract summary: In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimization is a popular tool for data-efficient optimization of
expensive objective functions. In real-life applications like engineering
design, the designer often wants to take multiple objectives as well as input
uncertainty into account to find a set of robust solutions. While this is an
active topic in single-objective Bayesian optimization, it is less investigated
in the multi-objective case. We introduce a novel Bayesian optimization
framework to efficiently perform multi-objective optimization considering input
uncertainty. We propose a robust Gaussian Process model to infer the Bayes risk
criterion to quantify robustness, and we develop a two-stage Bayesian
optimization process to search for a robust Pareto frontier. The complete
framework supports various distributions of the input uncertainty and takes
full advantage of parallel computing. We demonstrate the effectiveness of the
framework through numerical benchmarks.
Related papers
- Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters [0.0]
Robust design optimization is traditionally considered when uncertainties are mainly affecting the objective function.
The resulting nested optimization problem may be solved using a general-purpose solver, herein the non-dominated sorting genetic algorithm (NSGA-II)
The proposed approach consists of sequentially carrying out NSGA-II while using an adaptively built Kriging model to estimate the quantiles.
arXiv Detail & Related papers (2022-03-03T20:23:18Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints [44.25245545568633]
We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints.
We show that USeMOC is able to achieve more than 90 % reduction in the number of simulations needed to uncover optimized circuits.
arXiv Detail & Related papers (2020-08-16T23:34:09Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Resource Aware Multifidelity Active Learning for Efficient Optimization [0.8717253904965373]
This paper introduces the Resource Aware Active Learning (RAAL) strategy to accelerate the optimization of black box functions.
The RAAL strategy optimally seeds multiple points at each allowing for a major speed up of the optimization task.
arXiv Detail & Related papers (2020-07-09T10:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.