BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
- URL: http://arxiv.org/abs/2406.03616v1
- Date: Wed, 5 Jun 2024 20:23:52 GMT
- Title: BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
- Authors: Wei-Ting Tang, Ankush Chakrabarty, Joel A. Paulson,
- Abstract summary: Novelty search (NS) refers to a class of exploration algorithms that automatically uncover diverse system behaviors through simulations or experiments.
We propose a Bayesian optimization inspired algorithm for sample-efficient NS that is specifically designed for such expensive black-box systems.
We show that our approach greatly outperforms existing NS algorithms by finding substantially larger sets of diverse behaviors under limited sample budgets.
- Score: 1.204357447396532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novelty search (NS) refers to a class of exploration algorithms that automatically uncover diverse system behaviors through simulations or experiments. Systematically obtaining diverse outcomes is a key component in many real-world design problems such as material and drug discovery, neural architecture search, reinforcement learning, and robot navigation. Since the relationship between the inputs and outputs (i.e., behaviors) of these complex systems is typically not available in closed form, NS requires a black-box perspective. Consequently, popular NS algorithms rely on evolutionary optimization and other meta-heuristics that require intensive sampling of the input space, which is impractical when the system is expensive to evaluate. We propose a Bayesian optimization inspired algorithm for sample-efficient NS that is specifically designed for such expensive black-box systems. Our approach models the input-to-behavior mapping with multi-output Gaussian processes (MOGP) and selects the next point to evaluate by maximizing a novelty metric that depends on a posterior sample drawn from the MOGP that promotes both exploration and exploitation. By leveraging advances in efficient posterior sampling and high-dimensional Gaussian process modeling, we discuss how our approach can be made scalable with respect to both amount of data and number of inputs. We test our approach on ten synthetic benchmark problems and eight real-world problems (with up to 2133 inputs) including new applications such as discovery of diverse metal organic frameworks for use in clean energy technology. We show that our approach greatly outperforms existing NS algorithms by finding substantially larger sets of diverse behaviors under limited sample budgets.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
We introduce multi-granularity architecture search (MGAS) to discover both effective and efficient neural networks.
We learn discretization functions specific to each granularity level to adaptively determine the unit remaining ratio according to the evolving architecture.
Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MGAS outperforms other state-of-the-art methods in achieving a better trade-off between model performance and model size.
arXiv Detail & Related papers (2023-10-23T16:32:18Z) - Optimistic Active Exploration of Dynamical Systems [52.91573056896633]
We develop an algorithm for active exploration called OPAX.
We show how OPAX can be reduced to an optimal control problem that can be solved at each episode.
Our experiments show that OPAX is not only theoretically sound but also performs well for zero-shot planning on novel downstream tasks.
arXiv Detail & Related papers (2023-06-21T16:26:59Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD) is an iterative detection algorithm for large inverse linear problems.
We show CMD to feature a promising performance complexity trade-off compared to SotA.
Notably, we demonstrate CMD's soft outputs to be reliable for decoders.
arXiv Detail & Related papers (2021-02-25T09:54:25Z) - Adaptive Local Bayesian Optimization Over Multiple Discrete Variables [9.860437640748113]
This paper describes the approach of team KAIST OSI in a step-wise manner, which outperforms the baseline algorithms by up to +20.39%.
In a similar vein, we combine the methodology of Bayesian and multi-armed bandit,(MAB) approach to select the values with the consideration of the variable types.
Empirical evaluations demonstrate that our method outperforms the existing methods across different tasks.
arXiv Detail & Related papers (2020-12-07T07:51:23Z) - DISPATCH: Design Space Exploration of Cyber-Physical Systems [5.273291582861981]
Design of cyber-physical systems (CPSs) is a challenging task that involves searching over a large search space of various CPS configurations.
We propose DIS, a two-step methodology for sample-efficient search over the design space.
arXiv Detail & Related papers (2020-09-21T23:14:51Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.