Block majorization-minimization with diminishing radius for constrained nonsmooth nonconvex optimization
- URL: http://arxiv.org/abs/2012.03503v6
- Date: Fri, 29 Nov 2024 00:04:47 GMT
- Title: Block majorization-minimization with diminishing radius for constrained nonsmooth nonconvex optimization
- Authors: Hanbaek Lyu, Yuchen Li,
- Abstract summary: Block majorization-minimativeization (BMM) is a simple iterative algorithm for constrained nonnegative surrogates.
We show that BMM produces a novel first-order optimality measure for various algorithms.
We also demonstrate that the additional use of diminishing radius can improve the convergence rate of BMM in many instances.
- Score: 8.386501595252
- License:
- Abstract: Block majorization-minimization (BMM) is a simple iterative algorithm for constrained nonconvex optimization that sequentially minimizes majorizing surrogates of the objective function in each block while the others are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We first establish that for general constrained nonsmooth nonconvex optimization, BMM with $\rho$-strongly convex and $L_g$-smooth surrogates can produce an $\epsilon$-approximate first-order optimal point within $\widetilde{O}((1+L_g+\rho^{-1})\epsilon^{-2})$ iterations and asymptotically converges to the set of first-order optimal points. Next, we show that BMM combined with trust-region methods with diminishing radius has an improved complexity of $\widetilde{O}((1+L_g) \epsilon^{-2})$, independent of the inverse strong convexity parameter $\rho^{-1}$, allowing improved theoretical and practical performance with `flat' surrogates. Our results hold robustly even when the convex sub-problems are solved as long as the optimality gaps are summable. Central to our analysis is a novel continuous first-order optimality measure, by which we bound the worst-case sub-optimality in each iteration by the first-order improvement the algorithm makes. We apply our general framework to obtain new results on various algorithms such as the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung, regularized nonnegative tensor decomposition, and the classical block projected gradient descent algorithm. Lastly, we numerically demonstrate that the additional use of diminishing radius can improve the convergence rate of BMM in many instances.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Nonsmooth Projection-Free Optimization with Functional Constraints [12.20060970177791]
This paper presents a subgradient-based algorithm for constrained nonsmooth convex computation.
Our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints.
Similar performance is observed when deterministic subgradients are replaced with subgradients.
arXiv Detail & Related papers (2023-11-18T23:06:33Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Accelerated Single-Call Methods for Constrained Min-Max Optimization [5.266784779001398]
Existing methods either require two gradient calls or two projections in each iteration, which may costly in some applications.
In this paper, we first show that a variant of the Optimistic Gradient (RGOG) has a rich set of non-comonrate min-max convergence rate problems.
Our convergence rates hold for standard measures such as and the natural and the natural.
arXiv Detail & Related papers (2022-10-06T17:50:42Z) - Stochastic regularized majorization-minimization with weakly convex and
multi-convex surrogates [0.0]
We show that the first optimality gap of the proposed algorithm decays at the rate of the expected loss for various methods under nontens dependent data setting.
We obtain first convergence point for various methods under nontens dependent data setting.
arXiv Detail & Related papers (2022-01-05T15:17:35Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.