論文の概要: Space-Filling Subset Selection for an Electric Battery Model
- arxiv url: http://arxiv.org/abs/2012.03541v1
- Date: Mon, 7 Dec 2020 09:12:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 20:45:58.592885
- Title: Space-Filling Subset Selection for an Electric Battery Model
- Title(参考訳): 電池モデルのための空間充足サブセット選択
- Authors: Philipp Gesner, Christian Gletter, Florian Landenberger, Frank
Kirschbaum, Lutz Morawietz, Bernard B\"aker
- Abstract要約: バッテリーの動作に関する実際の運転データは、システムの強く非均一な励起を表します。
アルゴリズムは、非線形モデルの入力空間をより均質に満たす動的データポイントを選択する。
このトレーニングデータの削減は、ランダムなサブセットと比較してモデル品質の向上と、すべてのデータポイントを用いたモデリングよりも高速なトレーニングにつながることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic models of the battery performance are an essential tool throughout
the development process of automotive drive trains. The present study
introduces a method making a large data set suitable for modeling the
electrical impedance. When obtaining data-driven models, a usual assumption is
that more observations produce better models. However, real driving data on the
battery's behavior represent a strongly non-uniform excitation of the system,
which negatively affects the modeling. For that reason, a subset selection of
the available data was developed. It aims at building accurate nonlinear
autoregressive exogenous (NARX) models more efficiently. The algorithm selects
those dynamic data points that fill the input space of the nonlinear model more
homogeneously. It is shown, that this reduction of the training data leads to a
higher model quality in comparison to a random subset and a faster training
compared to modeling using all data points.
- Abstract(参考訳): バッテリー性能の動的モデルは、自動車駆動列車の開発過程において不可欠なツールである。
本研究では,電気インピーダンスのモデル化に適した大規模データセットを作成する手法を提案する。
データ駆動モデルを得るとき、通常、より多くの観察がより良いモデルを生み出すと仮定する。
しかし、バッテリの動作に関する実際の駆動データは、システムの非一様励起を強く表し、モデリングに悪影響を及ぼす。
そのため、利用可能なデータのサブセット選択が開発された。
高精度な非線形自己回帰外因性モデル(narx)の構築を目指している。
アルゴリズムは、非線形モデルの入力空間をより均質に満たした動的データポイントを選択する。
このトレーニングデータの削減は、ランダムなサブセットと比較してモデル品質の向上と、すべてのデータポイントを用いたモデリングよりも高速なトレーニングにつながることが示されている。
関連論文リスト
- When to Trust Your Data: Enhancing Dyna-Style Model-Based Reinforcement Learning With Data Filter [7.886307329450978]
ダイナスタイルのアルゴリズムは、推定環境モデルからのシミュレーションデータを用いてモデルフリートレーニングを加速することにより、2つのアプローチを組み合わせる。
これまでの作業では、モデルアンサンブルを使用したり、実際の環境から収集されたデータで推定されたモデルを事前訓練することで、この問題に対処している。
本研究では,実環境において収集したデータから大きく分岐する推定モデルからシミュレーションデータを除去するアウト・オブ・ディストリビューションデータフィルタを提案する。
論文 参考訳(メタデータ) (2024-10-16T01:49:03Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
我々は、自動走行アプリケーションの改善を継続的に行う方法で、生成データ生産を拡大することが証明された最初のモデルであるSubjectDriveを提案する。
本研究では, 多様なデータを生成するために, 多様な外部データソースを活用可能な, 主観制御機構を備えた新しいモデルを開発する。
論文 参考訳(メタデータ) (2024-03-28T14:07:13Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Robust Data-Driven Error Compensation for a Battery Model [0.0]
今日の大量のバッテリデータは、より正確で信頼性の高いシミュレーションにはまだ使われていません。
データ駆動型エラーモデルを導入し、既存の物理的動機付けモデルを強化します。
ニューラルネットワークは、既存の動的エラーを補償し、基礎となるデータの記述に基づいてさらに制限される。
論文 参考訳(メタデータ) (2020-12-31T16:11:36Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
本稿では,ニューラルネットワークを用いた反復学習セミパラメトリックモデルを自律レースの課題に適用する。
我々のモデルは純粋にパラメトリックモデルよりも正確に学習でき、純粋に非パラメトリックモデルよりもより一般化できることを示す。
論文 参考訳(メタデータ) (2020-11-17T16:24:10Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
データモデリングのために選択されたモデルが(線形/非線形、静的/動的)異なるモデルと独立(最小相関)モデルである場合、予測の精度が向上することが知られている。
アンサンブルモデルを重み付けするために文献で提案された様々なアプローチは、静的な重みセットを使用する。
この問題に対処するため、Reinforcement Learning (RL)アプローチでは、各モデルの重み付けを異なるタイミングで動的に割り当て、更新する。
論文 参考訳(メタデータ) (2020-08-20T10:40:42Z) - Experiment data-driven modeling of tokamak discharge in EAST [3.7332349900024013]
超伝導長パルストカマク(EAST)におけるトカマク放電モデルの検討
本研究では,大規模なEAST放電に対する制御信号の時間的シーケンスを利用して,放電診断信号のモデル化のための深層学習モデルを開発する。
最初の試みは、データ駆動手法を用いてトカマク放電をモデル化するための有望な結果を示した。
論文 参考訳(メタデータ) (2020-07-21T01:39:27Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。