論文の概要: Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing
- arxiv url: http://arxiv.org/abs/2011.08750v1
- Date: Tue, 17 Nov 2020 16:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 18:03:57.725103
- Title: Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing
- Title(参考訳): 自律走行のための反復半パラメトリックダイナミクスモデル学習
- Authors: Ignat Georgiev, Christoforos Chatzikomis, Timo V\"olkl, Joshua Smith
and Michael Mistry
- Abstract要約: 本稿では,ニューラルネットワークを用いた反復学習セミパラメトリックモデルを自律レースの課題に適用する。
我々のモデルは純粋にパラメトリックモデルよりも正確に学習でき、純粋に非パラメトリックモデルよりもより一般化できることを示す。
- 参考スコア(独自算出の注目度): 2.40966076588569
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurately modeling robot dynamics is crucial to safe and efficient motion
control. In this paper, we develop and apply an iterative learning
semi-parametric model, with a neural network, to the task of autonomous racing
with a Model Predictive Controller (MPC). We present a novel non-linear
semi-parametric dynamics model where we represent the known dynamics with a
parametric model, and a neural network captures the unknown dynamics. We show
that our model can learn more accurately than a purely parametric model and
generalize better than a purely non-parametric model, making it ideal for
real-world applications where collecting data from the full state space is not
feasible. We present a system where the model is bootstrapped on pre-recorded
data and then updated iteratively at run time. Then we apply our iterative
learning approach to the simulated problem of autonomous racing and show that
it can safely adapt to modified dynamics online and even achieve better
performance than models trained on data from manual driving.
- Abstract(参考訳): ロボットダイナミクスの正確なモデリングは、安全かつ効率的な動作制御に不可欠である。
本稿では,ニューラルネットワークを用いた反復学習半パラメトリックモデルを開発し,モデル予測制御(mpc)を用いた自律走行タスクに適用する。
パラメトリックモデルを用いて既知のダイナミクスを表現し、未知のダイナミクスをニューラルネットワークが捉えた、新しい非線形セミパラメトリックダイナミクスモデルを提案する。
我々のモデルは純粋にパラメトリックモデルよりも正確に学習でき、純粋に非パラメトリックモデルよりも一般化できることを示し、完全な状態空間からデータを収集することが不可能な現実世界アプリケーションに理想的であることを示す。
本稿では,事前記録されたデータに対してモデルがブートストラップされ,実行時に繰り返し更新されるシステムを提案する。
そして,この反復学習手法を自律走行のシミュレーション問題に適用し,オンライン上で修正されたダイナミクスに安全に適応でき,手動運転でトレーニングされたモデルよりも優れた性能が得られることを示した。
関連論文リスト
- Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
ドメイン認識のレベルが異なる制御指向パラメトリックモデルを提案する。
データ駆動型ブラックボックスとAUVダイナミクスのグレイボックス表現を構築するために、普遍微分方程式を用いる。
論文 参考訳(メタデータ) (2022-08-15T17:01:14Z) - Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots [3.673994921516517]
予測モデルは学習し、モデルベースのコントローラに適用することができるが、これらのモデルはしばしばオフラインで学習される。
このオフライン設定では、トレーニングデータをまず収集し、精巧なトレーニング手順により予測モデルを学ぶ。
本稿では,デプロイ中の動的モデルの精度を継続的に向上するオンライン動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-19T15:51:25Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。