論文の概要: KgPLM: Knowledge-guided Language Model Pre-training via Generative and
Discriminative Learning
- arxiv url: http://arxiv.org/abs/2012.03551v1
- Date: Mon, 7 Dec 2020 09:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:54:36.102958
- Title: KgPLM: Knowledge-guided Language Model Pre-training via Generative and
Discriminative Learning
- Title(参考訳): kgplm: 生成的および判別的学習による知識誘導型言語モデル
- Authors: Bin He, Xin Jiang, Jinghui Xiao, Qun Liu
- Abstract要約: 事実の知識の完成と検証によって導かれる言語モデル事前トレーニングフレームワークを提示する。
ゼロショットクローゼ型質問応答タスクのセットであるLAMAの実験結果は、私たちのモデルが従来の訓練済み言語モデルよりも豊富な事実知識を含んでいることを示しています。
- 参考スコア(独自算出の注目度): 45.067001062192844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on pre-trained language models have demonstrated their ability
to capture factual knowledge and applications in knowledge-aware downstream
tasks. In this work, we present a language model pre-training framework guided
by factual knowledge completion and verification, and use the generative and
discriminative approaches cooperatively to learn the model. Particularly, we
investigate two learning schemes, named two-tower scheme and pipeline scheme,
in training the generator and discriminator with shared parameter. Experimental
results on LAMA, a set of zero-shot cloze-style question answering tasks, show
that our model contains richer factual knowledge than the conventional
pre-trained language models. Furthermore, when fine-tuned and evaluated on the
MRQA shared tasks which consists of several machine reading comprehension
datasets, our model achieves the state-of-the-art performance, and gains large
improvements on NewsQA (+1.26 F1) and TriviaQA (+1.56 F1) over RoBERTa.
- Abstract(参考訳): 事前学習された言語モデルに関する最近の研究は、知識認識下流タスクにおける事実的知識と応用を捉える能力を示している。
本稿では,実知識の完成と検証を指導した言語モデル事前学習フレームワークを提案し,生成的および判別的アプローチを用いてモデル学習を行う。
特に,2-towerスキームとパイプラインスキームという2つの学習スキームについて,共通パラメータを用いたジェネレータと識別器の訓練を行った。
ゼロショットクローゼスタイルの質問応答タスクであるlamaの実験結果は、従来の事前学習された言語モデルよりも豊かな事実知識を含んでいることを示している。
さらに,複数の機械読解データセットからなるMRQA共有タスクの微調整と評価を行うと,我々のモデルは最先端の性能を実現し,RoBERTaよりもNewsQA(+1.26 F1)とTriviaQA(+1.56 F1)を大幅に改善する。
関連論文リスト
- NOWJ1@ALQAC 2023: Enhancing Legal Task Performance with Classic
Statistical Models and Pre-trained Language Models [4.329463429688995]
本稿では,NOWJ1チームによるALQAC(Automated Legal Question Answering Competition)2023について述べる。
文書検索タスクでは、入力制限を克服し、学習からランクまでの手法を適用して様々なモデルの特徴を統合する。
我々は,従来の統計モデルと事前学習型言語モデルの両方を利用して,各サブタスクに対して異なるシステムを開発するために,最先端のモデルを組み込んだ。
論文 参考訳(メタデータ) (2023-09-16T18:32:15Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
ニューラルコモンセンス知識モデルに格納されたコモンセンス知識を汎用的な事前学習言語モデルに転送するフレームワークであるコモンセンス知識伝達を導入する。
まず、一般的なテキストを利用して、ニューラルコモンセンス知識モデルからコモンセンス知識を抽出するクエリを形成する。
次に、コモンセンスマスクの埋め込みとコモンセンスの関係予測という2つの自己教師対象で言語モデルを洗練する。
論文 参考訳(メタデータ) (2023-06-04T15:44:51Z) - Zero-shot Visual Question Answering with Language Model Feedback [83.65140324876536]
知識に基づく視覚的質問応答(VQA)のための言語モデル指導型キャプションアプローチ LAMOC を提案する。
提案手法では,予備学習言語モデル (PLM) である回答予測モデルの文脈として,キャプションモデルによって生成されたキャプションを用いる。
論文 参考訳(メタデータ) (2023-05-26T15:04:20Z) - The KITMUS Test: Evaluating Knowledge Integration from Multiple Sources
in Natural Language Understanding Systems [87.3207729953778]
我々は、データセット上で最先端のコア参照解決モデルを評価する。
いくつかのモデルは、事前訓練時間と推論時間の両方で観察された知識について、オンザフライで推論するのに苦労している。
それでも、最高のパフォーマンスモデルでさえ、推論時にのみ提示される知識を確実に統合するのは難しいようです。
論文 参考訳(メタデータ) (2022-12-15T23:26:54Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - ANNA: Enhanced Language Representation for Question Answering [5.713808202873983]
事前学習モデルでは,各アプローチが個別にパフォーマンスにどう影響するかを示し,そのアプローチが共同で検討されている。
本稿では,事前学習タスクの拡張と,近隣のトークンにもっと参加して,事前学習言語モデリングのコンテキストの豊かさを把握できる新しい近隣認識機構を提案する。
我々の最良のモデルは、SQuAD 1.1上で95.7% F1と90.6% EMの新たな最先端結果を実現し、RoBERTa、ALBERT、ELECTRA、XLNetといった既存のトレーニング済み言語モデルよりも優れている。
論文 参考訳(メタデータ) (2022-03-28T05:26:52Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
BERTに基づく言語モデルを,学習過程の逐次的な段階において取得した知識のスナップショットを通じて比較する。
本稿では, クローズイン・ザ・ブランク文から知識グラフを抽出し, 知識獲得のタイムラインを提示する手法を提案する。
この分析を, BERTモデル(DistilBERT, BERT-base, RoBERTa)の事前学習変化の比較に拡張する。
論文 参考訳(メタデータ) (2021-11-16T15:18:01Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
検索強化生成モデルは、事前訓練されたパラメトリックメモリと非パラメトリックメモリを組み合わせて言語生成を行う。
我々は、RAGモデルが、最先端パラメトリックのみのセク2セックベースラインよりも、より具体的で、多様で、現実的な言語を生成することを示す。
論文 参考訳(メタデータ) (2020-05-22T21:34:34Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
言語モデルの事前学習を潜伏知識検索システムで強化し,ウィキペディアのような大規模コーパスから文書を検索し,出席できるようにする。
本研究では,このような知識検索を教師なしで事前学習する方法を初めて示す。
オープンドメイン質問回答(Open-QA)の課題を微調整し,検索型言語モデル事前学習(REALM)の有効性を実証する。
論文 参考訳(メタデータ) (2020-02-10T18:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。