論文の概要: NOWJ1@ALQAC 2023: Enhancing Legal Task Performance with Classic
Statistical Models and Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2309.09070v1
- Date: Sat, 16 Sep 2023 18:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:30:37.732084
- Title: NOWJ1@ALQAC 2023: Enhancing Legal Task Performance with Classic
Statistical Models and Pre-trained Language Models
- Title(参考訳): NOWJ1@ALQAC 2023:古典統計モデルと事前学習言語モデルによる法的タスクパフォーマンスの向上
- Authors: Tan-Minh Nguyen, Xuan-Hoa Nguyen, Ngoc-Duy Mai, Minh-Quan Hoang,
Van-Huan Nguyen, Hoang-Viet Nguyen, Ha-Thanh Nguyen, Thi-Hai-Yen Vuong
- Abstract要約: 本稿では,NOWJ1チームによるALQAC(Automated Legal Question Answering Competition)2023について述べる。
文書検索タスクでは、入力制限を克服し、学習からランクまでの手法を適用して様々なモデルの特徴を統合する。
我々は,従来の統計モデルと事前学習型言語モデルの両方を利用して,各サブタスクに対して異なるシステムを開発するために,最先端のモデルを組み込んだ。
- 参考スコア(独自算出の注目度): 4.329463429688995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the NOWJ1 Team's approach for the Automated Legal
Question Answering Competition (ALQAC) 2023, which focuses on enhancing legal
task performance by integrating classical statistical models and Pre-trained
Language Models (PLMs). For the document retrieval task, we implement a
pre-processing step to overcome input limitations and apply learning-to-rank
methods to consolidate features from various models. The question-answering
task is split into two sub-tasks: sentence classification and answer
extraction. We incorporate state-of-the-art models to develop distinct systems
for each sub-task, utilizing both classic statistical models and pre-trained
Language Models. Experimental results demonstrate the promising potential of
our proposed methodology in the competition.
- Abstract(参考訳): 本稿では,従来の統計モデルとPLM(Pre-trained Language Models)の統合による法的タスクパフォーマンスの向上に焦点を当てた,ALQAC(Automated Legal Question Answering Competition)2023に対するNOWJ1チームのアプローチについて述べる。
文書検索タスクでは,入力制限を克服する前処理ステップを実装し,様々なモデルの特徴を統合するための学習からランクへの手法を適用する。
質問応答タスクは、文分類と回答抽出の2つのサブタスクに分けられる。
従来の統計モデルと事前学習された言語モデルの両方を利用して,サブタスク毎に異なるシステムを開発するための最先端モデルを取り入れた。
実験結果は,提案手法の競争における可能性を示す。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Zero-shot Visual Question Answering with Language Model Feedback [83.65140324876536]
知識に基づく視覚的質問応答(VQA)のための言語モデル指導型キャプションアプローチ LAMOC を提案する。
提案手法では,予備学習言語モデル (PLM) である回答予測モデルの文脈として,キャプションモデルによって生成されたキャプションを用いる。
論文 参考訳(メタデータ) (2023-05-26T15:04:20Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
検索結果の質を向上させるために,頑健な多言語モデルを提案する。
事前学習の段階では、mlmタスク、分類タスク、コントラスト学習タスクを採用する。
微調整段階では、自信ある学習、指数的移動平均法(EMA)、対人訓練(FGM)、正規化ドロップアウト戦略(R-Drop)を用いる。
論文 参考訳(メタデータ) (2023-01-31T07:31:34Z) - Forging Multiple Training Objectives for Pre-trained Language Models via
Meta-Learning [97.28779163988833]
複数の事前学習目標が単一目的言語モデリングの理解能力の欠如を埋める。
メタラーニングに基づく新しい適応型サンプリングシステムであるtextitMOMETAS を提案し,任意の事前学習対象に対して潜時サンプリングパターンを学習する。
論文 参考訳(メタデータ) (2022-10-19T04:38:26Z) - ANNA: Enhanced Language Representation for Question Answering [5.713808202873983]
事前学習モデルでは,各アプローチが個別にパフォーマンスにどう影響するかを示し,そのアプローチが共同で検討されている。
本稿では,事前学習タスクの拡張と,近隣のトークンにもっと参加して,事前学習言語モデリングのコンテキストの豊かさを把握できる新しい近隣認識機構を提案する。
我々の最良のモデルは、SQuAD 1.1上で95.7% F1と90.6% EMの新たな最先端結果を実現し、RoBERTa、ALBERT、ELECTRA、XLNetといった既存のトレーニング済み言語モデルよりも優れている。
論文 参考訳(メタデータ) (2022-03-28T05:26:52Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
本稿では,事前学習したトランスモデルに基づく非自己回帰生成モデルを提案する。
我々はMIxソースと擬似ターゲットという,シンプルで効果的な反復訓練手法を提案する。
質問生成,要約,パラフレーズ生成を含む3つの世代ベンチマーク実験により,提案手法が新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2021-10-21T13:04:21Z) - OCHADAI-KYODAI at SemEval-2021 Task 1: Enhancing Model Generalization
and Robustness for Lexical Complexity Prediction [8.066349353140819]
単語とマルチワード表現の語彙的複雑性を予測するアンサンブルモデルを提案する。
モデルは、目的語またはMWEandの文を入力として受信し、その複雑性スコアを出力する。
本モデルは,両サブタスクの上位10システムにランクインした。
論文 参考訳(メタデータ) (2021-05-12T09:27:46Z) - KgPLM: Knowledge-guided Language Model Pre-training via Generative and
Discriminative Learning [45.067001062192844]
事実の知識の完成と検証によって導かれる言語モデル事前トレーニングフレームワークを提示する。
ゼロショットクローゼ型質問応答タスクのセットであるLAMAの実験結果は、私たちのモデルが従来の訓練済み言語モデルよりも豊富な事実知識を含んでいることを示しています。
論文 参考訳(メタデータ) (2020-12-07T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。