論文の概要: Explainable AI for Interpretable Credit Scoring
- arxiv url: http://arxiv.org/abs/2012.03749v1
- Date: Thu, 3 Dec 2020 18:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 15:04:01.252703
- Title: Explainable AI for Interpretable Credit Scoring
- Title(参考訳): 説明可能なAIによる信用スコアの解釈
- Authors: Lara Marie Demajo, Vince Vella and Alexiei Dingli
- Abstract要約: クレジットスコアリングは、金融の専門家がローン申請を受諾するかどうかについてより良い判断を下すのに役立つ。
アルゴリズムによる決定が一貫性のあるものであることを保証するため、規則はモデル解釈可能性の必要性を追加している。
正確かつ解釈可能な信用スコアモデルを提案する。
- 参考スコア(独自算出の注目度): 0.8379286663107844
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the ever-growing achievements in Artificial Intelligence (AI) and the
recent boosted enthusiasm in Financial Technology (FinTech), applications such
as credit scoring have gained substantial academic interest. Credit scoring
helps financial experts make better decisions regarding whether or not to
accept a loan application, such that loans with a high probability of default
are not accepted. Apart from the noisy and highly imbalanced data challenges
faced by such credit scoring models, recent regulations such as the `right to
explanation' introduced by the General Data Protection Regulation (GDPR) and
the Equal Credit Opportunity Act (ECOA) have added the need for model
interpretability to ensure that algorithmic decisions are understandable and
coherent. An interesting concept that has been recently introduced is
eXplainable AI (XAI), which focuses on making black-box models more
interpretable. In this work, we present a credit scoring model that is both
accurate and interpretable. For classification, state-of-the-art performance on
the Home Equity Line of Credit (HELOC) and Lending Club (LC) Datasets is
achieved using the Extreme Gradient Boosting (XGBoost) model. The model is then
further enhanced with a 360-degree explanation framework, which provides
different explanations (i.e. global, local feature-based and local
instance-based) that are required by different people in different situations.
Evaluation through the use of functionallygrounded, application-grounded and
human-grounded analysis show that the explanations provided are simple,
consistent as well as satisfy the six predetermined hypotheses testing for
correctness, effectiveness, easy understanding, detail sufficiency and
trustworthiness.
- Abstract(参考訳): 人工知能(AI)の進歩と近年の金融技術(FinTech)への熱意の高まりにより、信用スコアなどの応用は学術的な関心を集めている。
信用スコアは、金融専門家がデフォルトの確率の高いローンが受け入れられないようなローン申請を受理するかどうかについてより良い判断を下すのに役立つ。
このような信用スコアリングモデルが直面する騒々しく非常に不均衡なデータ課題とは別に、GDPR(General Data Protection Regulation)やECOA(Equal Credit Opportunity Act)によって導入された「説明権」のような最近の規制は、アルゴリズム的な決定が理解可能で一貫性のあるものであることを保証するためのモデル解釈性の必要性を追加している。
最近導入された興味深い概念は、ブラックボックスモデルをより解釈しやすいものにすることに焦点を当てた説明可能なai(xai)である。
本研究では,正確かつ解釈可能な信用スコアリングモデルを提案する。
分類には, エクストリーム・グラディエント・ブースティング(XGBoost)モデルを用いて, HELOC(Hotel Equity Line of Credit)とLC(Lending Club)データセットの最先端性能を実現する。
モデルはさらに360度説明フレームワークによって拡張され、異なる説明(つまり)を提供する。
異なる状況の異なる人々によって要求されるグローバル、ローカル機能ベース、およびローカルインスタンスベース)。
機能的接地分析,応用接地分析,人間接地分析による評価は,提示された説明が単純であり,一貫性があり,かつ,正確性,有効性,理解の容易さ,詳細な満足度,信頼性の6つの所定の仮説を満たしていることを示している。
関連論文リスト
- A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z) - Would I have gotten that reward? Long-term credit assignment by
counterfactual contribution analysis [50.926791529605396]
モデルベース信用代入アルゴリズムの新たなファミリーであるCOCOA(Counterfactual Contribution Analysis)を紹介する。
我々のアルゴリズムは、その後の報酬を得る際の行動の貢献度を測定することによって、正確な信用割当を実現する。
論文 参考訳(メタデータ) (2023-06-29T09:27:27Z) - Inclusive FinTech Lending via Contrastive Learning and Domain Adaptation [9.75150920742607]
フィンテックの貸与は、財政的包摂の促進に重要な役割を果たしてきた。
ローン審査中にアルゴリズムによる意思決定にバイアスがかかる可能性があるという懸念がある。
自己教師付きコントラスト学習とドメイン適応を用いたトランスフォーマーに基づくシーケンシャルローンスクリーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-05-10T01:11:35Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Enabling Machine Learning Algorithms for Credit Scoring -- Explainable
Artificial Intelligence (XAI) methods for clear understanding complex
predictive models [2.1723750239223034]
本稿では,様々な予測モデル(論理回帰,ロジスティック回帰,エビデンス変換の重み付け,現代の人工知能アルゴリズム)を比較し,先進木モデルがクライアントデフォルトの予測に最適であることを示す。
また,信用リスク実践者に対して,それらを解釈し,よりアクセスしやすいものにするための手法を用いて,高度なモデルを強化する方法を示す。
論文 参考訳(メタデータ) (2021-04-14T09:44:04Z) - Explaining Credit Risk Scoring through Feature Contribution Alignment
with Expert Risk Analysts [1.7778609937758323]
私たちは企業の信用スコアにフォーカスし、さまざまな機械学習モデルをベンチマークします。
目標は、企業が一定の期間内に金融問題を経験しているかどうかを予測するモデルを構築することです。
我々は、信用リスクの専門家とモデル機能属性説明との相違を強調した専門家による機能関連スコアを提供することで、光を当てる。
論文 参考訳(メタデータ) (2021-03-15T12:59:15Z) - Explainable AI in Credit Risk Management [0.0]
機械学習(ML)に基づく信用スコアリングモデルに対して,局所解釈モデル予測説明(LIME)とSHapley Additive exPlanations(SHAP)という2つの高度な説明可能性手法を実装した。
具体的には、LIMEを使用してインスタンスをローカルとSHAPで説明し、ローカルとグローバルの両方で説明します。
SHAP値を用いて生成されたグラフを説明するために利用可能なさまざまなカーネルを使用して、結果を詳細に議論し、複数の比較シナリオを提示する。
論文 参考訳(メタデータ) (2021-03-01T12:23:20Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Transparency, Auditability and eXplainability of Machine Learning Models
in Credit Scoring [4.370097023410272]
本稿では,信用スコアリングモデルを理解しやすくするために考慮すべきさまざまな次元について検討する。
本稿では,クレジットスコアにどのように適用できるか,そしてスコアカードの解釈可能性と比較する方法について概説する。
論文 参考訳(メタデータ) (2020-09-28T15:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。