論文の概要: Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models
- arxiv url: http://arxiv.org/abs/2310.00566v3
- Date: Sun, 18 Feb 2024 01:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 05:47:51.432482
- Title: Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models
- Title(参考訳): 多数の権限を与え、バイアスを負う: 大規模言語モデルによるジェネラリストクレジットスコアリング
- Authors: Duanyu Feng, Yongfu Dai, Jimin Huang, Yifang Zhang, Qianqian Xie,
Weiguang Han, Zhengyu Chen, Alejandro Lopez-Lira, Hao Wang
- Abstract要約: 大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
- 参考スコア(独自算出の注目度): 53.620827459684094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the financial industry, credit scoring is a fundamental element, shaping
access to credit and determining the terms of loans for individuals and
businesses alike. Traditional credit scoring methods, however, often grapple
with challenges such as narrow knowledge scope and isolated evaluation of
credit tasks. Our work posits that Large Language Models (LLMs) have great
potential for credit scoring tasks, with strong generalization ability across
multiple tasks. To systematically explore LLMs for credit scoring, we propose
the first open-source comprehensive framework. We curate a novel benchmark
covering 9 datasets with 14K samples, tailored for credit assessment and a
critical examination of potential biases within LLMs, and the novel instruction
tuning data with over 45k samples. We then propose the first Credit and Risk
Assessment Large Language Model (CALM) by instruction tuning, tailored to the
nuanced demands of various financial risk assessment tasks. We evaluate CALM,
existing state-of-art (SOTA) methods, open source and closed source LLMs on the
build benchmark. Our empirical results illuminate the capability of LLMs to not
only match but surpass conventional models, pointing towards a future where
credit scoring can be more inclusive, comprehensive, and unbiased. We
contribute to the industry's transformation by sharing our pioneering
instruction-tuning datasets, credit and risk assessment LLM, and benchmarks
with the research community and the financial industry.
- Abstract(参考訳): 金融業界では、クレジットスコアリングが基本的な要素であり、クレジットへのアクセスを形成し、個人やビジネスのローン条件を決定する。
しかし、伝統的なクレジットスコアリング手法は、狭い知識範囲や独立したクレジットタスクの評価といった課題にしばしば対処している。
我々の研究は、Large Language Models (LLM) が複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクに大きな可能性を持っていることを示唆している。
クレジットスコアリングのためのLCMを体系的に探索するために,我々は,最初のオープンソース包括的フレームワークを提案する。
筆者らは,14Kサンプルを用いた9つのデータセットを対象とし,LLM内の潜在的なバイアスに対する評価と評価を行うとともに,45k以上のサンプルを用いた新しいインストラクションチューニングデータについて検証した。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用リスク評価大言語モデル(CALM)を提案する。
ビルドベンチマークでは,CALM,既存の最先端(SOTA)メソッド,オープンソースおよびクローズドソースのLCMを評価した。
我々の経験的結果は、LLMが従来のモデルに適合するだけでなく、信用スコアがより包括的で包括的で偏見のない未来へ向けて、従来のモデルを上回る能力を示す。
我々は、先駆的なインストラクションチューニングデータセット、信用とリスクアセスメントLLM、および研究コミュニティと金融業界とのベンチマークを共有することで、業界変革に貢献する。
関連論文リスト
- Evaluating Large Language Models on Financial Report Summarization: An Empirical Study [9.28042182186057]
我々は3つの最先端大言語モデル(LLM)の比較研究を行っている。
我々の主な動機は、これらのモデルがどのように金融の中で活用できるかを探求することであり、正確さ、文脈的関連性、誤った情報や誤解を招く情報に対する堅牢性を要求する分野である。
本稿では,定量的メトリクス(精度,リコールなど)と質的分析(コンテキスト適合性,一貫性など)を統合し,各モデルの出力品質の全体像を提供する,革新的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-11T10:36:04Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending [1.1970409518725493]
ピアツーピア(P2P)融資は、借り手と貸し手とをオンラインプラットフォームを通じて結びつける独特の融資メカニズムとして登場した。
しかしながら、P2P貸与は情報非対称性の課題に直面している。
本稿では,ローン申請プロセスにおいて,借主が提供したテキスト記述を活用することで,この問題に対処する新たなアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-29T10:11:05Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
我々は知識指向LLMアセスメントベンチマーク(KoLA)を構築した。
人間の認知を模倣して、知識関連能力の4段階の分類を形成し、19ドルのタスクをカバーします。
私たちは、LLMによって事前訓練されたコーパスであるウィキペディアと、継続的に収集された新興コーパスを使用して、目に見えないデータや進化する知識を扱う能力を評価します。
論文 参考訳(メタデータ) (2023-06-15T17:20:46Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
クレジットスコアリングデータセットの不均衡の性質と、クレジットスコアリングデータセットの特徴の不均一性は、効果的なクレジットスコアリングモデルの開発と実装に困難をもたらす。
本稿では,主にスーパービジョンオートエンコーダの性能を活かしたBaging Supervised Autoencoder (BSAC)を提案する。
BSACはまた、過半数クラスのアンサンプに基づいて、Bagingプロセスの変種を採用することで、データ不均衡の問題にも対処する。
論文 参考訳(メタデータ) (2021-08-12T17:49:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。