Phase sensitivity approaching quantum Cramer-Rao bound in a modified
SU(1,1) interferometer
- URL: http://arxiv.org/abs/2012.04236v1
- Date: Tue, 8 Dec 2020 06:09:38 GMT
- Title: Phase sensitivity approaching quantum Cramer-Rao bound in a modified
SU(1,1) interferometer
- Authors: Jian-Dong Zhang, Chenglong You, Chuang Li, and Shuai Wang
- Abstract summary: We propose a new protocol based on a modified SU(1,1) interferometer, where the second nonlinear element is replaced by a beam splitter.
Our analysis suggests that the protocol can achieve sub-shot-noise-limited phase sensitivity and is robust against photon loss and background noise.
- Score: 5.222964691649603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SU(1,1) interferometers, based on the usage of nonlinear elements, are
superior to passive interferometers in phase sensitivity. However, the SU(1,1)
interferometer cannot make full use of photons carrying phase information as
the second nonlinear element annihilates some of the photons inside. Here, we
focus on improving phase sensitivity and propose a new protocol based on a
modified SU(1,1) interferometer, where the second nonlinear element is replaced
by a beam splitter. We utilize two coherent states as inputs and implement
balanced homodyne measurement at the output. Our analysis suggests that the
protocol we propose can achieve sub-shot-noise-limited phase sensitivity and is
robust against photon loss and background noise. Our work is important for
practical quantum metrology using SU(1,1) interferometers.
Related papers
- Improved phase sensitivity of an SU(1,1) interferometer based on the internal single-path local squeezing operation [0.0]
Internal single-path LSO scheme can enhance the phase sensitivity and the quantum Fisher information.
A larger squeezing parameter r leads to a better performance of the interferometer.
arXiv Detail & Related papers (2024-10-13T12:38:51Z) - Phase estimation via number-conserving operation inside the SU(1,1) interferometer [0.0]
We propose a theoretical scheme to improve the precision of phase measurement using homodyne detection.
We analyze the effects of number-conserving operations on the phase sensitivity, the quantum Fisher information, and the quantum Cramer-Rao bound under both ideal and photon losses scenarios.
arXiv Detail & Related papers (2024-03-29T11:04:38Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Phase estimation via multi-photon subtraction inside the SU(1,1)
interferometer [0.0]
The effects of multi-photon subtraction on phase sensitivity, quantum Fisher information, and quantum Cramer-Rao bound are analyzed.
Our proposed scheme represents a valuable method for achieving quantum precision measurements.
arXiv Detail & Related papers (2023-11-24T17:05:28Z) - Quantum-improved phase estimation with a displacement-assisted SU(1,1)
interferometer [0.49259062564301753]
Two local displacement operations (LDOs) inside an SU (1,1) interferometer are investigated in this paper.
We show that the estimation performance of DSU (1,1) interferometer is always better than that of SU (1,1) interferometer without the LDO.
Our findings would open an useful view for quantum-improved phase estimation of optical interferometers.
arXiv Detail & Related papers (2022-10-06T02:29:29Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Analytic Signal Phase in $N-D$ by Linear Symmetry Tensor--fingerprint
modeling [69.35569554213679]
We show that the Analytic Signal phase, and its gradient have a hitherto unstudied discontinuity in $2-D $ and higher dimensions.
This shortcoming can result in severe artifacts whereas the problem does not exist in $1-D $ signals.
We suggest the use of Linear Symmetry phase, relying on more than one set of Gabor filters, but with a negligible computational add-on.
arXiv Detail & Related papers (2020-05-16T21:17:26Z) - SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive,
Loss-Tolerant Quantum Metrology [2.2066285179245337]
We present a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer.
This interferometer achieves high signal-to-noise ratio (SNR) and tolerance to photon losses external to the interferometer, e.g., in detectors.
arXiv Detail & Related papers (2020-04-29T15:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.