Adaptive Sequential SAA for Solving Two-stage Stochastic Linear Programs
- URL: http://arxiv.org/abs/2012.03761v1
- Date: Mon, 7 Dec 2020 14:58:16 GMT
- Title: Adaptive Sequential SAA for Solving Two-stage Stochastic Linear Programs
- Authors: Raghu Pasupathy and Yongjia Song
- Abstract summary: We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale two-stage linear programs.
The proposed algorithm can be stopped in finite-time to return a solution endowed with a probabilistic guarantee on quality.
- Score: 1.6181085766811525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present adaptive sequential SAA (sample average approximation) algorithms
to solve large-scale two-stage stochastic linear programs. The iterative
algorithm framework we propose is organized into \emph{outer} and \emph{inner}
iterations as follows: during each outer iteration, a sample-path problem is
implicitly generated using a sample of observations or ``scenarios," and solved
only \emph{imprecisely}, to within a tolerance that is chosen
\emph{adaptively}, by balancing the estimated statistical error against
solution error. The solutions from prior iterations serve as \emph{warm starts}
to aid efficient solution of the (piecewise linear convex) sample-path
optimization problems generated on subsequent iterations. The generated
scenarios can be independent and identically distributed (iid), or dependent,
as in Monte Carlo generation using Latin-hypercube sampling, antithetic
variates, or randomized quasi-Monte Carlo. We first characterize the
almost-sure convergence (and convergence in mean) of the optimality gap and the
distance of the generated stochastic iterates to the true solution set. We then
characterize the corresponding iteration complexity and work complexity rates
as a function of the sample size schedule, demonstrating that the best
achievable work complexity rate is Monte Carlo canonical and analogous to the
generic $\mathcal{O}(\epsilon^{-2})$ optimal complexity for non-smooth convex
optimization. We report extensive numerical tests that indicate favorable
performance, due primarily to the use of a sequential framework with an optimal
sample size schedule, and the use of warm starts. The proposed algorithm can be
stopped in finite-time to return a solution endowed with a probabilistic
guarantee on quality.
Related papers
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
We discuss an application of quadratic Approximation to statistical estimation of high-dimensional sparse parameters.
We show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution.
arXiv Detail & Related papers (2022-10-23T23:23:23Z) - Selection of the Most Probable Best [2.1095005405219815]
We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution.
We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution.
We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases.
arXiv Detail & Related papers (2022-07-15T15:27:27Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
We develop a general recipe for analyzing the convergence of iterative algorithms for a class of regression models.
deterministicly, we accurately capture both the convergence rate of the algorithm and the eventual error floor in the finite-sample regime.
We show sharp convergence rates for both higher-order algorithms based on alternating updates and first-order algorithms based on subgradient subgradients.
arXiv Detail & Related papers (2021-09-20T21:48:19Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Stochastic Multi-level Composition Optimization Algorithms with
Level-Independent Convergence Rates [12.783783498844022]
We study smooth multi-level composition optimization problems, where the objective function is a nested composition of $T$ functions.
We show that the first algorithm, which is a generalization of citeGhaRuswan20 to the $T$ level case, can achieve a sample complexity of $mathcalO (1/epsilon$6)
This is the first time that such an online algorithm designed for the (un) multi-level setting, obtains the same sample complexity under standard assumptions.
arXiv Detail & Related papers (2020-08-24T15:57:50Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.