Selection of the Most Probable Best
- URL: http://arxiv.org/abs/2207.07533v2
- Date: Sat, 20 Apr 2024 21:59:59 GMT
- Title: Selection of the Most Probable Best
- Authors: Taeho Kim, Kyoung-kuk Kim, Eunhye Song,
- Abstract summary: We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution.
We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution.
We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases.
- Score: 2.1095005405219815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution. We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution and design an efficient sequential sampling algorithm to learn the MPB when the parameter has a finite support. We derive the large deviations rate of the probability of falsely selecting the MPB and formulate an optimal computing budget allocation problem to find the rate-maximizing static sampling ratios. The problem is then relaxed to obtain a set of optimality conditions that are interpretable and computationally efficient to verify. We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases. Furthermore, we show that the empirical performances of the algorithms can be significantly improved by adopting the kernel ridge regression for mean estimation while achieving the same asymptotic convergence results. The algorithms are benchmarked against a state-of-the-art contextual R&S algorithm and demonstrated to have superior empirical performances.
Related papers
- Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Efficient Learning for Selecting Top-m Context-Dependent Designs [0.7646713951724012]
We consider a simulation optimization problem for a context-dependent decision-making.
We develop a sequential sampling policy to efficiently learn the performance of each design under each context.
Numerical experiments demonstrate that the proposed method improves the efficiency for selection of top-m context-dependent designs.
arXiv Detail & Related papers (2023-05-06T16:11:49Z) - Convergence Rate Analysis for Optimal Computing Budget Allocation
Algorithms [1.713291434132985]
Ordinal optimization (OO) is a widely-studied technique for optimizing discrete-event dynamic systems.
A well-known method in OO is the optimal computing budget allocation (OCBA)
In this paper, we investigate two popular OCBA algorithms.
arXiv Detail & Related papers (2022-11-27T04:55:40Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Sparse Bayesian Learning via Stepwise Regression [1.2691047660244335]
We propose a coordinate ascent algorithm for SBL termed Relevance Matching Pursuit (RMP)
As its noise variance parameter goes to zero, RMP exhibits a surprising connection to Stepwise Regression.
We derive novel guarantees for Stepwise Regression algorithms, which also shed light on RMP.
arXiv Detail & Related papers (2021-06-11T00:20:27Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.