A bounded-noise mechanism for differential privacy
- URL: http://arxiv.org/abs/2012.03817v1
- Date: Mon, 7 Dec 2020 16:03:21 GMT
- Title: A bounded-noise mechanism for differential privacy
- Authors: Yuval Dagan, Gil Kur
- Abstract summary: We output an approximation of the average $frac1nsum_i=1n vecx(i)$ of vectors $vecx(i) in [0,1]k$, while preserving the privacy with respect to any $vecx(i)$.
We present an $(epsilon,delta)$-private mechanism with optimal $ell_infty$ error for most values of $delta$.
- Score: 3.9596068699962323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering multiple counting queries is one of the best-studied problems in
differential privacy. Its goal is to output an approximation of the average
$\frac{1}{n}\sum_{i=1}^n \vec{x}^{(i)}$ of vectors $\vec{x}^{(i)} \in [0,1]^k$,
while preserving the privacy with respect to any $\vec{x}^{(i)}$. We present an
$(\epsilon,\delta)$-private mechanism with optimal $\ell_\infty$ error for most
values of $\delta$. This result settles the conjecture of Steinke and Ullman
[2020] for the these values of $\delta$. Our algorithm adds independent noise
of bounded magnitude to each of the $k$ coordinates, while prior solutions
relied on unbounded noise such as the Laplace and Gaussian mechanisms.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Profile Reconstruction from Private Sketches [13.929335175122265]
Given a multiset of $n$ items from $mathcalD$, the emphprofile reconstruction problem is to estimate, for $t = 0, 1, dots, n$, the fraction $vecf[t]$ of items in $mathcalD$ that appear exactly $tfty times.
We consider differentially private profile estimation in a distributed, space-constrained setting where we wish to maintain an updatable, private sketch of the multiset.
We show how to speed up their LP-based technique
arXiv Detail & Related papers (2024-06-03T09:51:28Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
We present an algorithm that outputs a point from a distributionO(varepsilon)$close to $$ in infinity-distance.
We also present a "soft-pi" version of the Dikin walk which may be independent interest.
arXiv Detail & Related papers (2021-11-07T13:44:50Z) - Unique Games hardness of Quantum Max-Cut, and a conjectured
vector-valued Borell's inequality [6.621324975749854]
We show that the noise stability of a function $f:mathbbRn to -1, 1$ is the expected value of $f(boldsymbolx) cdot f(boldsymboly)$.
We conjecture that the expected value of $langle f(boldsymbolx), f(boldsymboly)rangle$ is minimized by the function $f(x) = x_leq k / Vert x_leq k /
arXiv Detail & Related papers (2021-11-01T20:45:42Z) - Locally Private $k$-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error [10.632986841188]
We bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms.
It is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation.
arXiv Detail & Related papers (2021-05-31T14:41:40Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - On Avoiding the Union Bound When Answering Multiple Differentially
Private Queries [49.453751858361265]
We give an algorithm for this task that achieves an expected $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$.
On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$ holds not only in expectation but always.
arXiv Detail & Related papers (2020-12-16T17:58:45Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.