Hierarchical Deep Recurrent Neural Network based Method for Fault
Detection and Diagnosis
- URL: http://arxiv.org/abs/2012.03861v1
- Date: Mon, 7 Dec 2020 17:11:56 GMT
- Title: Hierarchical Deep Recurrent Neural Network based Method for Fault
Detection and Diagnosis
- Authors: Piyush Agarwal, Jorge Ivan Mireles Gonzalez, Ali Elkamel, Hector
Budman
- Abstract summary: The algorithm is based on a Supervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN)
An external pseudo-random binary signal (PRBS) is designed and injected into the system to identify incipient faults.
The hierarchical structure based strategy improves the detection and classification accuracy significantly for both incipient and non-incipient faults.
- Score: 0.3670422696827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Deep Neural Network (DNN) based algorithm is proposed for the detection and
classification of faults in industrial plants. The proposed algorithm has the
ability to classify faults, especially incipient faults that are difficult to
detect and diagnose with traditional threshold based statistical methods or by
conventional Artificial Neural Networks (ANNs). The algorithm is based on a
Supervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN) that
uses dynamic information of the process along the time horizon. Based on this
network a hierarchical structure is formulated by grouping faults based on
their similarity into subsets of faults for detection and diagnosis. Further,
an external pseudo-random binary signal (PRBS) is designed and injected into
the system to identify incipient faults. The hierarchical structure based
strategy improves the detection and classification accuracy significantly for
both incipient and non-incipient faults. The proposed approach is tested on the
benchmark Tennessee Eastman Process resulting in significant improvements in
classification as compared to both multivariate linear model-based strategies
and non-hierarchical nonlinear model-based strategies.
Related papers
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges.
This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems.
We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets.
arXiv Detail & Related papers (2024-09-01T08:53:21Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - A novel approach for wafer defect pattern classification based on
topological data analysis [0.0]
In semiconductor manufacturing, wafer map defect pattern provides critical information for facility maintenance and yield management.
We propose a novel way to represent the shape of the defect pattern as a finite-dimensional vector, which will be used as an input for a neural network algorithm for classification.
arXiv Detail & Related papers (2022-09-19T11:54:13Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm [0.0]
We propose a neural network adversarial attack method based on an improved genetic algorithm.
The method does not need the internal structure and parameter information of the neural network model.
arXiv Detail & Related papers (2021-10-05T04:46:16Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning with Knowledge of Structure: A Neural Network-Based Approach
for MIMO-OFDM Detection [33.46816493359834]
Building on a reservoir computing (RC)-based approach towards symbol detection, we introduce a symmetric and decomposed binary decision neural network.
We show that the introduced symmetric neural network can decompose the original $M$-ary detection problem into a series of binary classification tasks.
Numerical evaluations demonstrate that the introduced hybrid RC-binary decision detection framework performs close to maximum likelihood model-based symbol detection methods.
arXiv Detail & Related papers (2020-12-01T18:16:19Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
We propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables.
We also design the first diagnostic method to quantify the vulnerability contributed by each layer.
arXiv Detail & Related papers (2020-07-17T01:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.