Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm
- URL: http://arxiv.org/abs/2110.01818v1
- Date: Tue, 5 Oct 2021 04:46:16 GMT
- Title: Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm
- Authors: Dingming Yang, Yanrong Cui, Hongqiang Yuan
- Abstract summary: We propose a neural network adversarial attack method based on an improved genetic algorithm.
The method does not need the internal structure and parameter information of the neural network model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning algorithms are widely used in fields such as computer vision
and natural language processing, but they are vulnerable to security threats
from adversarial attacks because of their internal presence of a large number
of nonlinear functions and parameters leading to their uninterpretability. In
this paper, we propose a neural network adversarial attack method based on an
improved genetic algorithm. The improved genetic algorithm improves the
variation and crossover links based on the original genetic optimization
algorithm, which greatly improves the iteration efficiency and shortens the
running time. The method does not need the internal structure and parameter
information of the neural network model, and it can obtain the adversarial
samples with high confidence in a short time by the classification and
confidence information of the neural network. The experimental results show
that the method in this paper has a wide range of applicability and high
efficiency for the model, and provides a new idea for the adversarial attack.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - Automated Design of Linear Bounding Functions for Sigmoidal Nonlinearities in Neural Networks [23.01933325606068]
Existing complete verification techniques offer provable guarantees for all robustness queries but struggle to scale beyond small neural networks.
We propose a novel parameter search method to improve the quality of these linear approximations.
Specifically, we show that using a simple search method, carefully adapted to the given verification problem through state-of-the-art algorithm configuration techniques, improves the average global lower bound by 25% on average over the current state of the art.
arXiv Detail & Related papers (2024-06-14T16:16:26Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - The Integrated Forward-Forward Algorithm: Integrating Forward-Forward
and Shallow Backpropagation With Local Losses [0.0]
We propose an integrated method that combines the strengths of both FFA and shallow backpropagation.
We show that training neural networks with the Integrated Forward-Forward Algorithm has the potential of generating neural networks with advantageous features like robustness.
arXiv Detail & Related papers (2023-05-22T12:10:47Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Benchmarking the Accuracy and Robustness of Feedback Alignment
Algorithms [1.2183405753834562]
Backpropagation is the default algorithm for training deep neural networks due to its simplicity, efficiency and high convergence rate.
In recent years, more biologically plausible learning methods have been proposed.
BioTorch is a software framework to create, train, and benchmark biologically motivated neural networks.
arXiv Detail & Related papers (2021-08-30T18:02:55Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
A shortcoming of convolutional neural networks is that they are vulnerable to adversarial attacks.
This paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy.
Under a minimal computational overhead, a dilation architecture is expected to be friendly with the standard performance of the backbone CNN.
arXiv Detail & Related papers (2021-08-16T03:58:00Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.