Susceptibility of quasiclassical Brownian motion in harmonic nonlinear
potentials
- URL: http://arxiv.org/abs/2012.04033v1
- Date: Mon, 7 Dec 2020 20:16:27 GMT
- Title: Susceptibility of quasiclassical Brownian motion in harmonic nonlinear
potentials
- Authors: Pedro J. Colmenares
- Abstract summary: It is provided a recursion method to find its solutions based on functional equations in the Banach space.
The ODE for the response function is a highly nonlinear damped non-autonomous Duffing equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work sets the exact equations for the quasiclassical response function
and susceptibility of a Brownian particle immersed in a bath of quantum
harmonic oscillators driving by nonlinear harmonic potentials. A delta force
perturbation gives rise to a response whose susceptibility is the combination
of a linear term, own of the harmonic oscillator, plus a nonlinear one
involving an integral \textcolor{black}{equation. It is provided a recursion
method to find its solutions based on functional equations in the Banach
space.} The ODE for the response function is a highly nonlinear damped
non-autonomous Duffing equation for which the aforementioned method is used to
get its solution.
Related papers
- Quantum dynamics in the self-consistent quadratic approximation [0.0]
A self-consistent quadratic theory is presented to account for nonlinear contributions in quantum dynamics.
The dynamics is proven trace-preserving, with the Hamiltonian acting as a constant of motion for initial Gaussian states.
arXiv Detail & Related papers (2024-03-17T20:13:41Z) - The Harmonic Oscillator Potential Perturbed by a Combination of Linear and Non-linear Dirac Delta Interactions with Application to Bose-Einstein Condensation [0.0]
We study the bound state analysis of a one dimensional nonlinear version of the Schr"odinger equation.
We propose that the many-body interactions of the Bose gas can be effectively described by the nonlinear term in the Schr"odinger equation.
arXiv Detail & Related papers (2024-02-03T14:33:29Z) - The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications [0.0]
We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
arXiv Detail & Related papers (2023-04-12T18:43:39Z) - A linear response framework for simulating bosonic and fermionic
correlation functions illustrated on quantum computers [58.720142291102135]
Lehmann formalism for obtaining response functions in linear response has no direct link to experiment.
Within the context of quantum computing, we make the experiment an inextricable part of the quantum simulation.
We show that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material.
arXiv Detail & Related papers (2023-02-20T19:01:02Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - A Nonlinear Master Equation for Open Quantum Systems [0.0]
A nonlinear master equation is derived, reflecting properly the entropy of open quantum systems.
The corresponding nonlinear equation for the Wigner function accounts rigorously for the thermo-quantum entropy.
arXiv Detail & Related papers (2020-10-12T12:19:29Z) - Linear and integrable nonlinear evolution of the qutrit [0.0]
The analyzed dynamics of the qutrit is rich and includes quasiperiodic motion, multiple equilibria and limit cycles.
The generalization of the von Neumann equation preserving convexity of the state space is studied in the nontrivial case of the qutrit.
arXiv Detail & Related papers (2020-06-18T07:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.