The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications
- URL: http://arxiv.org/abs/2304.06730v1
- Date: Wed, 12 Apr 2023 18:43:39 GMT
- Title: The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications
- Authors: Guillermo Gordillo-N\'u\~nez, Renato Alvarez-Nodarse, Niurka R.
Quintero
- Abstract summary: We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We rigorously solve the time-independent Schr\"odinger equation for the
Rosen-Morse type potential. By using the Nikiforov-Uvarov method, we obtain, in
a systematic way, the complete solution of such equation, which includes the
so-called bound states (square-integrable solutions) associated with the
discrete spectrum, as well as unbound states region (bounded but not
necessarily square-integrable solutions) related to the continuous part of the
spectrum. The resolution of this problem is used to show that the kinks of the
non-linear Klein-Gordon equation with $\varphi^{2p+2}$ type potentials are
stable. We also derive the orthogonality and completeness relations satisfied
by the set of eigenfunctions which are useful in the description of the
dynamics of kinks under perturbations or interacting with antikinks.
Related papers
- Generalized and new solutions of the NRT nonlinear Schrödinger equation [0.0]
We present new solutions of the non-linear Schr"oodinger equation proposed by Nobre, Rego-Monteiro and Tsallis for the free particle.
Analytical expressions for the wave function, the auxiliary field and the probability density are derived using a variety of approaches.
arXiv Detail & Related papers (2024-10-26T17:02:33Z) - Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Solution of the v-representability problem on a one-dimensional torus [0.0]
We provide a solution to the v-representability problem for a non-relativistic quantum many-particle system on a ring domain.
Importantly, this allows for a well-defined Kohn-Sham procedure but, on the other hand, invalidates the usual proof of the Hohenberg-Kohn theorem.
arXiv Detail & Related papers (2023-12-12T12:41:10Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - No need for a grid: Adaptive fully-flexible gaussians for the
time-dependent Schr\"odinger equation [0.0]
Linear combinations of complex gaussian functions are shown to be an extremely flexible representation for the solution of the Schr"odinger equation in one spatial dimension.
We present a scheme based on the method of vertical lines, or Rothe's method, for propagation of such wavefunctions.
This paves the way for accurate and affordable solutions of the time-dependent Schr"odinger equation for multi-atom molecules beyond the Born--Oppenheimer approximation.
arXiv Detail & Related papers (2022-07-01T08:54:41Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Exponentially confining potential well [0.0]
We introduce an exponentially confining potential well that could be used as a model to describe the structure of a strongly localized system.
We obtain an approximate partial solution of the Schr"odinger equation with this potential well where we find the lowest energy spectrum and corresponding wavefunctions.
arXiv Detail & Related papers (2020-05-15T17:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.