Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation
- URL: http://arxiv.org/abs/2012.04170v1
- Date: Tue, 8 Dec 2020 02:26:03 GMT
- Title: Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation
- Authors: Jiahua Dong, Yang Cong, Gan Sun, Yunsheng Yang, Xiaowei Xu and
Zhengming Ding
- Abstract summary: We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
- Score: 79.58311369297635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly-supervised learning has attracted growing research attention on
medical lesions segmentation due to significant saving in pixel-level
annotation cost. However, 1) most existing methods require effective prior and
constraints to explore the intrinsic lesions characterization, which only
generates incorrect and rough prediction; 2) they neglect the underlying
semantic dependencies among weakly-labeled target enteroscopy diseases and
fully-annotated source gastroscope lesions, while forcefully utilizing
untransferable dependencies leads to the negative performance. To tackle above
issues, we propose a new weakly-supervised lesions transfer framework, which
can not only explore transferable domain-invariant knowledge across different
datasets, but also prevent the negative transfer of untransferable
representations. Specifically, a Wasserstein quantified transferability
framework is developed to highlight widerange transferable contextual
dependencies, while neglecting the irrelevant semantic characterizations.
Moreover, a novel selfsupervised pseudo label generator is designed to equally
provide confident pseudo pixel labels for both hard-to-transfer and
easyto-transfer target samples. It inhibits the enormous deviation of false
pseudo pixel labels under the self-supervision manner. Afterwards,
dynamically-searched feature centroids are aligned to narrow category-wise
distribution shift. Comprehensive theoretical analysis and experiments show the
superiority of our model on the endoscopic dataset and several public datasets.
Related papers
- Unsupervised Domain Adaptation for Brain Vessel Segmentation through
Transwarp Contrastive Learning [46.248404274124546]
Unsupervised domain adaptation (UDA) aims to align the labelled source distribution with the unlabelled target distribution to obtain domain-invariant predictive models.
This paper proposes a simple yet potent contrastive learning framework for UDA to narrow the inter-domain gap between labelled source and unlabelled target distribution.
arXiv Detail & Related papers (2024-02-23T10:01:22Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - The Topology-Overlap Trade-Off in Retinal Arteriole-Venule Segmentation [0.0]
convolutional neural networks can achieve high overlap between predictions and expert annotations.
We show that our model is able to produce results on par with state-of-the-art from the point of view of overlap.
arXiv Detail & Related papers (2023-03-31T13:01:05Z) - One-Shot Medical Landmark Localization by Edge-Guided Transform and
Noisy Landmark Refinement [59.14062241534754]
We propose a two-stage framework for one-shot medical landmark localization.
In stage I, we learn an end-to-end cascade of global alignment and local deformations, under the guidance of novel loss functions.
In stage II, we explore self-consistency for selecting reliable pseudo labels and cross-consistency for semi-supervised learning.
arXiv Detail & Related papers (2022-07-31T15:42:28Z) - Severity Quantification and Lesion Localization of COVID-19 on CXR using
Vision Transformer [25.144248675578286]
Under the global pandemic of COVID-19, building an automated framework that quantifies the severity of COVID-19 has become increasingly important.
We propose a novel Vision Transformer tailored for both quantification of the severity and clinically applicable localization of the COVID-19 related lesions.
Our model is trained in a weakly-supervised manner to generate the full probability maps from weak array-based labels.
arXiv Detail & Related papers (2021-03-12T03:17:19Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - CSCL: Critical Semantic-Consistent Learning for Unsupervised Domain
Adaptation [42.226842513334184]
We develop a new Critical Semantic-Consistent Learning model, which mitigates the discrepancy of both domain-wise and category-wise distributions.
Specifically, a critical transfer based adversarial framework is designed to highlight transferable domain-wise knowledge while neglecting untransferable knowledge.
arXiv Detail & Related papers (2020-08-24T14:12:04Z) - What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic
Lesions Segmentation [51.7837386041158]
We develop a new unsupervised semantic transfer model including two complementary modules for endoscopic lesions segmentation.
Specifically, T_D focuses on where to translate transferable visual information of medical lesions via residual transferability-aware bottleneck.
T_F highlights how to augment transferable semantic features of various lesions and automatically ignore untransferable representations.
arXiv Detail & Related papers (2020-04-24T00:57:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.