COIN: Confidence Score-Guided Distillation for Annotation-Free Cell Segmentation
- URL: http://arxiv.org/abs/2503.11439v2
- Date: Mon, 17 Mar 2025 01:59:06 GMT
- Title: COIN: Confidence Score-Guided Distillation for Annotation-Free Cell Segmentation
- Authors: Sanghyun Jo, Seo Jin Lee, Seungwoo Lee, Seohyung Hong, Hyungseok Seo, Kyungsu Kim,
- Abstract summary: We present COIN (COnfidence score-guided INstance distillation), a novel annotation-free framework with three key steps.<n>COIN increases sensitivity for the presence of error-free instances via unsupervised semantic segmentation with optimal transport.<n>It offers an alternative to ground truth annotations, offering an alternative to ground truth annotations.
- Score: 2.5234274237739402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell instance segmentation (CIS) is crucial for identifying individual cell morphologies in histopathological images, providing valuable insights for biological and medical research. While unsupervised CIS (UCIS) models aim to reduce the heavy reliance on labor-intensive image annotations, they fail to accurately capture cell boundaries, causing missed detections and poor performance. Recognizing the absence of error-free instances as a key limitation, we present COIN (COnfidence score-guided INstance distillation), a novel annotation-free framework with three key steps: (1) Increasing the sensitivity for the presence of error-free instances via unsupervised semantic segmentation with optimal transport, leveraging its ability to discriminate spatially minor instances, (2) Instance-level confidence scoring to measure the consistency between model prediction and refined mask and identify highly confident instances, offering an alternative to ground truth annotations, and (3) Progressive expansion of confidence with recursive self-distillation. Extensive experiments across six datasets show COIN outperforming existing UCIS methods, even surpassing semi- and weakly-supervised approaches across all metrics on the MoNuSeg and TNBC datasets. The code is available at https://github.com/shjo-april/COIN.
Related papers
- Leveraging CORAL-Correlation Consistency Network for Semi-Supervised Left Atrium MRI Segmentation [14.296441810235223]
Semi-supervised learning (SSL) has been widely used to learn from both a few labeled images and many unlabeled images.
Most current SSL-based segmentation methods use pixel values directly to identify similar features in labeled and unlabeled data.
We introduce CORAL(Correlation-Aligned)-Correlation Consistency Network (CORN) to capture the global structure shape and local details of Left Atrium.
arXiv Detail & Related papers (2024-10-21T11:46:28Z) - SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
arXiv Detail & Related papers (2024-10-17T12:31:37Z) - Guided Score identity Distillation for Data-Free One-Step Text-to-Image Generation [62.30570286073223]
Diffusion-based text-to-image generation models have demonstrated the ability to produce images aligned with textual descriptions.<n>We introduce a data-free guided distillation method that enables the efficient distillation of pretrained Diffusion models without access to the real training data.<n>By exclusively training with synthetic images generated by its one-step generator, our data-free distillation method rapidly improves FID and CLIP scores, achieving state-of-the-art FID performance while maintaining a competitive CLIP score.
arXiv Detail & Related papers (2024-06-03T17:44:11Z) - Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation [11.195959019678314]
Consistency learning is a central strategy to tackle unlabeled data in semi-supervised medical image segmentation.
In this paper, we propose an Adaptive Bidirectional Displacement approach to solve the above challenge.
arXiv Detail & Related papers (2024-05-01T08:17:43Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Estimation and Analysis of Slice Propagation Uncertainty in 3D Anatomy Segmentation [5.791830972526084]
Supervised methods for 3D anatomy segmentation demonstrate superior performance but are often limited by the availability of annotated data.
This limitation has led to a growing interest in self-supervised approaches in tandem with the abundance of available un-annotated data.
Slice propagation has emerged as an self-supervised approach that leverages slice registration as a self-supervised task to achieve full anatomy segmentation with minimal supervision.
arXiv Detail & Related papers (2024-03-18T22:26:19Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Reliability-Adaptive Consistency Regularization for Weakly-Supervised
Point Cloud Segmentation [80.07161039753043]
Weakly-supervised point cloud segmentation with extremely limited labels is desirable to alleviate the expensive costs of collecting densely annotated 3D points.
This paper explores applying the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations.
We propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels.
arXiv Detail & Related papers (2023-03-09T10:41:57Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.