Detuning modulated universal composite pulses
- URL: http://arxiv.org/abs/2012.04401v2
- Date: Sat, 14 Aug 2021 16:21:05 GMT
- Title: Detuning modulated universal composite pulses
- Authors: Hadar Greener, Elica Kyoseva, Haim Suchowski
- Abstract summary: This family of pulses enables to overcome inevitable fabrication errors in silicon photonics.
We extend universal DMCPs to n-level systems with irreducible SU(2) symmetry to create state transfer that is highly robust to errors in the pulse area from any initial state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a general method to derive detuning-modualted composite pulses
(DMCPs) as N rotations of a canonical two-state quantum system to create
accurate and robust pulses that are independent of the initial state of the
system. This scheme has minimal pulse overhead, and achieves pulses that are
stable against amplitude errors well within the $10^{-4}$ threshold that may be
suitable for quantum information processing (QIP), within the lifetime of the
system. This family of pulses enables to overcome inevitable fabrication errors
in silicon photonics, and relax the need for a precise initial state of light
coupled into the system to achieve accurate light transfer. Furthermore, we
extend universal DMCPs to n-level systems with irreducible SU(2) symmetry to
create state transfer that is highly robust to errors in the pulse area from
any initial state.
Related papers
- Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Composite pulses for high fidelity population transfer in three-level
systems [6.743193621855191]
We propose a composite pulses scheme by modulating phases to achieve high fidelity population transfer in three-level systems.
As an example, we employ the composite pulses sequence for achieving the three-atom singlet state in an atom-cavity system with ultrahigh fidelity.
arXiv Detail & Related papers (2022-02-16T06:50:48Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Five-second coherence of a single spin with single-shot readout in
silicon carbide [84.97423065534817]
We demonstrate single-shot readout of single defects in silicon carbide (SiC)
We achieve over 80% readout fidelity without pre- or post-selection.
We report single spin T2 > 5s, over two orders of magnitude greater than previously reported in this system.
arXiv Detail & Related papers (2021-10-04T17:35:02Z) - Robust population inversion in three-level systems by composite pulses [16.041631902819304]
We exploit the idea of composite pulses to achieve robust population inversion in a three-level quantum system.
The composite pulses sequence is designed by vanishing high-order error terms, and can compensate the systematic errors to any desired order.
As an example, we employ the designed composite pulse sequence to prepare the W state in a robust manner in the superconducting circuits.
arXiv Detail & Related papers (2021-05-31T12:23:55Z) - Robust single-qubit gates by composite pulses in three-level systems [2.9527449434851336]
In this work, we derive the form of the composite pulse sequence to implement robust single-qubit gates in a three-level system.
We find that the three-pulse sequence cannot completely eliminate the first order of systematic errors, but still availably makes the fidelity resistant to variations in a specific direction.
arXiv Detail & Related papers (2020-12-03T23:31:09Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Energy transfer in $N$-component nanosystems enhanced by pulse-driven
vibronic many-body entanglement [41.94295877935867]
We show that pulses of intermediate duration generate highly entangled vibronic states that spread multiple excitons -- and hence energy -- maximally within the system.
The underlying pulse-generated vibronic entanglement increases in strength and robustness as $N$ increases.
arXiv Detail & Related papers (2017-08-10T17:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.