論文の概要: RC-SSFL: Towards Robust and Communication-efficient Semi-supervised
Federated Learning System
- arxiv url: http://arxiv.org/abs/2012.04432v1
- Date: Tue, 8 Dec 2020 14:02:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 20:43:53.410535
- Title: RC-SSFL: Towards Robust and Communication-efficient Semi-supervised
Federated Learning System
- Title(参考訳): RC-SSFL:ロバストでコミュニケーション効率の良い半教師付きフェデレーションラーニングシステムを目指して
- Authors: Yi Liu, Xingliang Yuan, Ruihui Zhao, Yifeng Zheng, Yefeng Zheng
- Abstract要約: Federated Learning(FL)は、新たな分散型人工知能パラダイムである。
現在のシステムは、強い前提に大きく依存している: すべてのクライアントは、豊富な真実をラベル付けしたデータを持っている。
実用的ロバスト・コミュニケーション効率の高い半監視FL(RC-SSFL)システム設計を紹介します。
- 参考スコア(独自算出の注目度): 25.84191221776459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is an emerging decentralized artificial intelligence
paradigm, which promises to train a shared global model in high-quality while
protecting user data privacy. However, the current systems rely heavily on a
strong assumption: all clients have a wealth of ground truth labeled data,
which may not be always feasible in the real life. In this paper, we present a
practical Robust, and Communication-efficient Semi-supervised FL (RC-SSFL)
system design that can enable the clients to jointly learn a high-quality model
that is comparable to typical FL's performance. In this setting, we assume that
the client has only unlabeled data and the server has a limited amount of
labeled data. Besides, we consider malicious clients can launch poisoning
attacks to harm the performance of the global model. To solve this issue,
RC-SSFL employs a minimax optimization-based client selection strategy to
select the clients who hold high-quality updates and uses geometric median
aggregation to robustly aggregate model updates. Furthermore, RC-SSFL
implements a novel symmetric quantization method to greatly improve
communication efficiency. Extensive case studies on two real-world datasets
demonstrate that RC-SSFL can maintain the performance comparable to typical FL
in the presence of poisoning attacks and reduce communication overhead by $2
\times \sim 4 \times $.
- Abstract(参考訳): Federated Learning(FL)は、ユーザデータのプライバシを保護しながら、高品質で共有グローバルモデルをトレーニングする、新たな分散人工知能パラダイムである。
しかし、現在のシステムは強固な仮定に大きく依存している: すべてのクライアントは、データにラベル付けされた豊富な基盤真理を持っている。
本稿では,クライアントが協調して,典型的なflの性能に匹敵する高品質モデルを学ぶことが可能な,実用的なロバストで通信効率の高いセミ教師付きfl(rc-ssfl)システム設計を提案する。
この設定では、クライアントはラベルなしのデータしか持たず、サーバは限定された量のラベル付きデータを持っていると仮定する。
さらに、悪意のあるクライアントは、グローバルモデルのパフォーマンスを損なうために毒殺攻撃を仕掛けることができると考えています。
この問題を解決するため、RC-SSFLは最小限の最適化に基づくクライアント選択戦略を採用し、高品質な更新を行うクライアントを選択し、幾何的中央集束を用いてモデル更新を堅牢に集約する。
さらにrc-ssflは新しい対称量子化法を実装し、通信効率を大幅に向上させた。
2つの実世界のデータセットに対する大規模なケーススタディにより、RC-SSFLは中毒攻撃の有無で典型的なFLに匹敵する性能を維持し、通信オーバーヘッドを$2 \times \sim 4 \times $で削減できることが示された。
関連論文リスト
- EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
フェデレートラーニング(FL)がIoT(Internet of Things)で大人気
FLrceは、関係ベースのクライアント選択と早期停止戦略を備えた効率的なFLフレームワークである。
その結果,既存のFLフレームワークと比較してFLrceは計算効率を少なくとも30%,通信効率を43%向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-15T10:13:44Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - User-Centric Federated Learning: Trading off Wireless Resources for
Personalization [18.38078866145659]
フェデレートラーニング(FL)システムでは、統計的不均一性はアルゴリズム収束時間を増やし、一般化性能を低下させる。
FLが課すプライバシー制約に違反することなく、上記の問題に対処するためには、パーソナライズされたFLメソッドは、データに直接アクセスすることなく、統計的に類似したクライアントを結合する必要がある。
本研究では,容易に利用できる勾配情報に基づいて,FLクライアント毎にパーソナライズされたモデルを生成可能なユーザ中心集約ルールを設計する。
提案アルゴリズムは,平均精度,ノード性能,通信オーバヘッドの訓練において,パーソナライズされたFLベースラインを上回っている。
論文 参考訳(メタデータ) (2023-04-25T15:45:37Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。