Hierarchical Residual Attention Network for Single Image
Super-Resolution
- URL: http://arxiv.org/abs/2012.04578v1
- Date: Tue, 8 Dec 2020 17:24:28 GMT
- Title: Hierarchical Residual Attention Network for Single Image
Super-Resolution
- Authors: Parichehr Behjati, Pau Rodriguez, Armin Mehri, Isabelle Hupont, Carles
Fern\'andez Tena, Jordi Gonzalez
- Abstract summary: This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation.
Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
- Score: 2.0571256241341924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks are the most successful models in single image
super-resolution. Deeper networks, residual connections, and attention
mechanisms have further improved their performance. However, these strategies
often improve the reconstruction performance at the expense of considerably
increasing the computational cost. This paper introduces a new lightweight
super-resolution model based on an efficient method for residual feature and
attention aggregation. In order to make an efficient use of the residual
features, these are hierarchically aggregated into feature banks for posterior
usage at the network output. In parallel, a lightweight hierarchical attention
mechanism extracts the most relevant features from the network into attention
banks for improving the final output and preventing the information loss
through the successive operations inside the network. Therefore, the processing
is split into two independent paths of computation that can be simultaneously
carried out, resulting in a highly efficient and effective model for
reconstructing fine details on high-resolution images from their low-resolution
counterparts. Our proposed architecture surpasses state-of-the-art performance
in several datasets, while maintaining relatively low computation and memory
footprint.
Related papers
- Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Real Image Restoration via Structure-preserving Complementarity
Attention [10.200625895876023]
We propose a novel lightweight Complementary Attention Module, which includes a density module and a sparse module.
To reduce the loss of details caused by denoising, this paper constructs a gradient-based structure-preserving branch.
arXiv Detail & Related papers (2022-07-28T04:24:20Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
In this work, we propose a novel Residual Local Feature Network (RLFN)
The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation.
In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge.
arXiv Detail & Related papers (2022-05-16T08:46:34Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
We tackle model efficiency by exploiting redundancy in the textitimplicit structure of the building blocks of convolutional neural networks.
We show how this decomposition can be applied to 2D and 3D kernels as well as the fully-connected layers.
arXiv Detail & Related papers (2020-08-06T04:38:38Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.