Real Image Restoration via Structure-preserving Complementarity
Attention
- URL: http://arxiv.org/abs/2207.13879v1
- Date: Thu, 28 Jul 2022 04:24:20 GMT
- Title: Real Image Restoration via Structure-preserving Complementarity
Attention
- Authors: Yuanfan Zhang, Gen Li, Lei Sun
- Abstract summary: We propose a novel lightweight Complementary Attention Module, which includes a density module and a sparse module.
To reduce the loss of details caused by denoising, this paper constructs a gradient-based structure-preserving branch.
- Score: 10.200625895876023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since convolutional neural networks perform well in learning generalizable
image priors from large-scale data, these models have been widely used in image
denoising tasks. However, the computational complexity increases dramatically
as well on complex model. In this paper, We propose a novel lightweight
Complementary Attention Module, which includes a density module and a sparse
module, which can cooperatively mine dense and sparse features for feature
complementary learning to build an efficient lightweight architecture.
Moreover, to reduce the loss of details caused by denoising, this paper
constructs a gradient-based structure-preserving branch. We utilize
gradient-based branches to obtain additional structural priors for denoising,
and make the model pay more attention to image geometric details through
gradient loss optimization.Based on the above, we propose an efficiently Unet
structured network with dual branch, the visual results show that can
effectively preserve the structural details of the original image, we evaluate
benchmarks including SIDD and DND, where SCANet achieves state-of-the-art
performance in PSNR and SSIM while significantly reducing computational cost.
Related papers
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
We propose a components decomposition and co-optimization network (CDCN) for blind SR.
CDCN decomposes the input LR image into structure and detail components in feature space.
We present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process.
arXiv Detail & Related papers (2022-12-03T14:53:56Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - NeighCNN: A CNN based SAR Speckle Reduction using Feature preserving
Loss Function [1.7188280334580193]
NeighCNN is a deep learning-based speckle reduction algorithm that handles multiplicative noise.
Various synthetic, as well as real SAR images, are used for testing the NeighCNN architecture.
arXiv Detail & Related papers (2021-08-26T04:20:07Z) - Hierarchical Residual Attention Network for Single Image
Super-Resolution [2.0571256241341924]
This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation.
Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
arXiv Detail & Related papers (2020-12-08T17:24:28Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
We tackle model efficiency by exploiting redundancy in the textitimplicit structure of the building blocks of convolutional neural networks.
We show how this decomposition can be applied to 2D and 3D kernels as well as the fully-connected layers.
arXiv Detail & Related papers (2020-08-06T04:38:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.