論文の概要: Distilling Knowledge from Reader to Retriever for Question Answering
- arxiv url: http://arxiv.org/abs/2012.04584v1
- Date: Tue, 8 Dec 2020 17:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:50:32.536323
- Title: Distilling Knowledge from Reader to Retriever for Question Answering
- Title(参考訳): 質問応答のための読者からレトリバーへの知識の蒸留
- Authors: Gautier Izacard and Edouard Grave
- Abstract要約: 我々は,知識蒸留に触発された下流タスクのレトリバーモデルを学ぶ手法を提案する。
質問応答の方法を評価し,最新の結果を得た。
- 参考スコア(独自算出の注目度): 16.942581590186343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of information retrieval is an important component of many natural
language processing systems, such as open domain question answering. While
traditional methods were based on hand-crafted features, continuous
representations based on neural networks recently obtained competitive results.
A challenge of using such methods is to obtain supervised data to train the
retriever model, corresponding to pairs of query and support documents. In this
paper, we propose a technique to learn retriever models for downstream tasks,
inspired by knowledge distillation, and which does not require annotated pairs
of query and documents. Our approach leverages attention scores of a reader
model, used to solve the task based on retrieved documents, to obtain synthetic
labels for the retriever. We evaluate our method on question answering,
obtaining state-of-the-art results.
- Abstract(参考訳): 情報検索の課題は、オープンドメイン質問応答など、多くの自然言語処理システムにおいて重要な要素である。
従来の手法は手作りの特徴に基づいているが、ニューラルネットワークに基づく連続表現は、最近競争的な結果を得た。
このような方法を使用する際の課題は、クエリとサポートドキュメントのペアに対応するレトリバーモデルをトレーニングするための教師付きデータを取得することである。
本稿では,知識蒸留に触発され,照会と文書の注釈付きペアを必要としない下流タスクの検索モデルを学ぶ手法を提案する。
提案手法は,検索した文書に基づいてタスクを解くために使用される読み手モデルの注意スコアを利用して,検索者の合成ラベルを取得する。
質問応答の方法を評価し,最新の結果を得た。
関連論文リスト
- Dual-Feedback Knowledge Retrieval for Task-Oriented Dialogue Systems [42.17072207835827]
本稿では,レトリバーを利用して関連する知識を検索し,システム応答を生成するレトリバー・ジェネレータアーキテクチャを提案する。
提案手法は,3つのベンチマークデータセットを用いた実験結果から,タスク指向の対話タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-23T03:21:11Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z) - Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog [42.088274728084265]
外部データベースから適切なドメイン知識を取得することは、エンドツーエンドのタスク指向の対話システムの中心にある。
既存のシステムの多くは、知識検索と応答生成を融合させ、参照応答からの直接監督でそれらを最適化している。
応答生成から知識検索を分離し,多粒度知識検索システムを提案する。
論文 参考訳(メタデータ) (2023-05-17T12:12:46Z) - Retrieval as Attention: End-to-end Learning of Retrieval and Reading
within a Single Transformer [80.50327229467993]
学習した1つのモデルが競合検索とQA性能の両方を達成可能であることを示す。
エンドツーエンド適応は、教師なし設定と教師なし設定の両方において、ドメイン外のデータセットのパフォーマンスを大幅に向上させることを示す。
論文 参考訳(メタデータ) (2022-12-05T04:51:21Z) - Open-domain Question Answering via Chain of Reasoning over Heterogeneous
Knowledge [82.5582220249183]
異種知識ソース間のシングル/マルチホップ質問に応答する新しいオープンドメイン質問応答(ODQA)フレームワークを提案する。
分離された証拠を収集するためにレトリバーにのみ依存する従来の方法とは異なり、我々の仲介者は検索された集合に対する推論の連鎖を実行する。
本システムは,2つのODQAデータセットであるOTT-QAとNQに対して,Wikipediaの表や節に対する競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-22T03:21:32Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Questions Are All You Need to Train a Dense Passage Retriever [123.13872383489172]
ARTは、ラベル付きトレーニングデータを必要としない高密度検索モデルをトレーニングするための、新しいコーパスレベルのオートエンコーディングアプローチである。
そこで,(1) 入力質問を用いて証拠文書の集合を検索し,(2) 文書を用いて元の質問を再構築する確率を計算する。
論文 参考訳(メタデータ) (2022-06-21T18:16:31Z) - Weakly Supervised Pre-Training for Multi-Hop Retriever [23.79574380039197]
本研究では,人的努力を伴わない,弱教師付きマルチホップレトリバーの事前学習手法を提案する。
提案手法は,1)複雑な質問のベクトル表現を生成するための事前学習タスク,2)厳密なエンコーダに基づく事前学習モデル構造として,質問とサブクエストのネスト構造を生成するスケーラブルなデータ生成手法を含む。
論文 参考訳(メタデータ) (2021-06-18T08:06:02Z) - End-to-End Training of Multi-Document Reader and Retriever for
Open-Domain Question Answering [36.80395759543162]
本稿では,検索拡張されたオープンドメイン質問応答システムに対するエンドツーエンドの差別化学習手法を提案する。
我々は,検索決定を関連文書の集合よりも遅延変数としてモデル化する。
提案手法は,一致点の精度を2~3%向上させる。
論文 参考訳(メタデータ) (2021-06-09T19:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。