論文の概要: Accurate 3D Object Detection using Energy-Based Models
- arxiv url: http://arxiv.org/abs/2012.04634v1
- Date: Tue, 8 Dec 2020 18:53:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:55:11.778363
- Title: Accurate 3D Object Detection using Energy-Based Models
- Title(参考訳): エネルギーモデルを用いた高精度3次元物体検出
- Authors: Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Sch\"on
- Abstract要約: スパースLiDARデータに基づく乱雑な環境における3Dバウンディングボックスの回帰は極めて難しい問題である。
確率回帰のための条件付エネルギーベースモデル(ebms)の最近の進歩を考察する。
提案手法は,SA-SSDのベースラインを全3DODメトリクスで一貫して上回っている。
- 参考スコア(独自算出の注目度): 33.820204149327324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 3D object detection (3DOD) is crucial for safe navigation of complex
environments by autonomous robots. Regressing accurate 3D bounding boxes in
cluttered environments based on sparse LiDAR data is however a highly
challenging problem. We address this task by exploring recent advances in
conditional energy-based models (EBMs) for probabilistic regression. While
methods employing EBMs for regression have demonstrated impressive performance
on 2D object detection in images, these techniques are not directly applicable
to 3D bounding boxes. In this work, we therefore design a differentiable
pooling operator for 3D bounding boxes, serving as the core module of our EBM
network. We further integrate this general approach into the state-of-the-art
3D object detector SA-SSD. On the KITTI dataset, our proposed approach
consistently outperforms the SA-SSD baseline across all 3DOD metrics,
demonstrating the potential of EBM-based regression for highly accurate 3DOD.
Code is available at https://github.com/fregu856/ebms_3dod.
- Abstract(参考訳): ロボットによる複雑な環境の安全なナビゲーションには,正確な3Dオブジェクト検出(3DOD)が不可欠である。
しかし, 粗いLiDARデータに基づいて, 粗い環境下での正確な3Dバウンディングボックスの回帰は極めて難しい問題である。
確率回帰のための条件付きエネルギーベースモデル(EBM)の最近の進歩を探求することによって、この問題に対処する。
EBMを用いた回帰法は画像中の2次元物体検出において顕著な性能を示したが、これらの手法は直接3次元境界ボックスに適用できない。
そこで本研究では,EMMネットワークのコアモジュールとして機能する3次元バウンディングボックス用の可変プール演算子を設計する。
我々は、この一般的なアプローチを最先端の3Dオブジェクト検出器SA-SSDに統合する。
KITTIデータセットでは,提案手法はSA-SSDベースラインを全3DOD指標で一貫して上回り,高精度な3DODに対するESMベースの回帰の可能性を示す。
コードはhttps://github.com/fregu856/ebms_3dodで入手できる。
関連論文リスト
- SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
本稿では,SOGDet(Semantic-Occupancy Guided Multi-view Object Detection)と呼ばれる新しい手法を提案する。
以上の結果から,SOGDet は nuScenes Detection Score (NDS) と平均平均精度 (mAP) の3つのベースライン法の性能を一貫して向上させることがわかった。
これは、3Dオブジェクト検出と3Dセマンティック占有の組み合わせが、3D環境をより包括的に認識し、より堅牢な自律運転システムの構築を支援することを示唆している。
論文 参考訳(メタデータ) (2023-08-26T07:38:21Z) - BSH-Det3D: Improving 3D Object Detection with BEV Shape Heatmap [10.060577111347152]
我々は,BSH-Det3Dという新しいLiDARベースの3Dオブジェクト検出モデルを提案する。
鳥の視線から完全な形状を推定することにより、空間的特徴を高める効果的な方法を適用する。
KITTIベンチマークの実験は、精度と速度の観点から最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2023-03-03T15:13:11Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。