論文の概要: PLUME: Efficient 3D Object Detection from Stereo Images
- arxiv url: http://arxiv.org/abs/2101.06594v2
- Date: Thu, 11 Mar 2021 19:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 20:17:41.701055
- Title: PLUME: Efficient 3D Object Detection from Stereo Images
- Title(参考訳): PLUME:ステレオ画像からの効率的な3次元物体検出
- Authors: Yan Wang, Bin Yang, Rui Hu, Ming Liang, Raquel Urtasun
- Abstract要約: 既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
- 参考スコア(独自算出の注目度): 95.31278688164646
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D object detection plays a significant role in various robotic applications
including self-driving. While many approaches rely on expensive 3D sensors like
LiDAR to produce accurate 3D estimates, stereo-based methods have recently
shown promising results at a lower cost. Existing methods tackle the problem in
two steps: first depth estimation is performed, a pseudo LiDAR point cloud
representation is computed from the depth estimates, and then object detection
is performed in 3D space. However, because the two separate tasks are optimized
in different metric spaces, the depth estimation is biased towards nearby
objects and may cause sub-optimal performance of 3D detection. In this paper we
propose a model that unifies these two tasks in the same metric space.
Specifically, our model directly constructs a pseudo LiDAR feature volume
(PLUME) in 3D space, which is used to solve both occupancy estimation and
object detection tasks. Our approach achieves state-of-the-art performance on
the challenging KITTI benchmark, with significantly reduced inference time
compared with existing methods.
- Abstract(参考訳): 3Dオブジェクト検出は、自動運転を含む様々なロボットアプリケーションにおいて重要な役割を果たす。
多くのアプローチでは、LiDARのような高価な3Dセンサーを使って正確な3D推定を行うが、ステレオベースの手法は最近、より低コストで有望な結果を示している。
既存の手法では、2つのステップでこの問題に取り組む: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
しかし、2つの異なるタスクは異なる距離空間で最適化されるため、深度推定は近傍の物体に偏りがあり、3次元検出の準最適性能を引き起こす可能性がある。
本稿では,この2つのタスクを同じ距離空間で統一するモデルを提案する。
具体的には,3次元空間における擬似lidar特徴量(plume)を直接構築し,占有率推定と物体検出の課題の解決に利用する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
関連論文リスト
- SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
本稿では,SOGDet(Semantic-Occupancy Guided Multi-view Object Detection)と呼ばれる新しい手法を提案する。
以上の結果から,SOGDet は nuScenes Detection Score (NDS) と平均平均精度 (mAP) の3つのベースライン法の性能を一貫して向上させることがわかった。
これは、3Dオブジェクト検出と3Dセマンティック占有の組み合わせが、3D環境をより包括的に認識し、より堅牢な自律運転システムの構築を支援することを示唆している。
論文 参考訳(メタデータ) (2023-08-26T07:38:21Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - SM3D: Simultaneous Monocular Mapping and 3D Detection [1.2183405753834562]
本稿では,同時マッピングと3次元検出のための,革新的で効率的なマルチタスク深層学習フレームワーク(SM3D)を提案する。
両モジュールのエンドツーエンドのトレーニングにより、提案したマッピングと3D検出は、最先端のベースラインを10.0%、精度13.2%で上回っている。
我々の単分子マルチタスクSM3Dは純粋なステレオ3D検出器の2倍以上の速度で、2つのモジュールを別々に使用するより18.3%速い。
論文 参考訳(メタデータ) (2021-11-24T17:23:37Z) - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries [43.02373021724797]
マルチカメラ3Dオブジェクト検出のためのフレームワークを提案する。
本手法は3次元空間での予測を直接操作する。
我々はnuScenes自動運転ベンチマークで最先端の性能を達成する。
論文 参考訳(メタデータ) (2021-10-13T17:59:35Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。