論文の概要: Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans
- arxiv url: http://arxiv.org/abs/2012.04858v2
- Date: Thu, 4 Feb 2021 04:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:15:01.022420
- Title: Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans
- Title(参考訳): 人体における情報探索パターン理解のためのモデル非依存機能
- Authors: Soumya Chatterjee, Pradeep Shenoy
- Abstract要約: 不確実な意思決定タスクでは、人間はそのタスクに関連する情報を探し、統合し、行動する際、特徴的なバイアスを示す。
ここでは,これらのバイアスを総合的に測定・分類した,大規模に収集した先行設計実験のデータを再検討した。
これらのバイアスを集約的に再現するディープラーニングモデルを設計し、個々の行動の変化を捉えます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In decision making tasks under uncertainty, humans display characteristic
biases in seeking, integrating, and acting upon information relevant to the
task. Here, we reexamine data from previous carefully designed experiments,
collected at scale, that measured and catalogued these biases in aggregate
form. We design deep learning models that replicate these biases in aggregate,
while also capturing individual variation in behavior. A key finding of our
work is that paucity of data collected from each individual subject can be
overcome by sampling large numbers of subjects from the population, while still
capturing individual differences. In addition, we can predict human behavior
with high accuracy without making any assumptions about task goals, reward
structure, or individual biases, thus providing a model-agnostic fit to human
behavior in the task. Such an approach can sidestep potential limitations in
modeler-specified inductive biases, and has implications for computational
modeling of human cognitive function in general, and of human-AI interfaces in
particular.
- Abstract(参考訳): 不確実な意思決定タスクでは、人間はそのタスクに関連する情報を探し、統合し、行動する際、特徴的なバイアスを示す。
ここでは,これらのバイアスを総合的に測定・分類した,大規模に収集した先行設計実験のデータを再検討した。
我々は、これらのバイアスを集合的に再現するディープラーニングモデルを設計し、また、振る舞いの個々のバリエーションをキャプチャする。
私たちの研究の鍵となる発見は、個々の被験者から収集されたデータのpaucityが、人口から大量の被験者をサンプリングすることで克服できることです。
さらに、タスク目標や報酬構造、個人バイアスについて仮定することなく、高い精度で人間の行動を予測することができ、タスク内の人間の行動にモデルに依存しない適合性を提供します。
このようなアプローチは、モデリング者が特定した帰納的バイアスの潜在的な制限を横取りし、一般に人間の認知機能、特に人間とAIインターフェースの計算モデルに影響を及ぼす可能性がある。
関連論文リスト
- Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
本研究では,効率的な異常検出に向けて,人間のエージェントの移動行動のモデル化方法について検討する。
我々はGPSデータを時系列の静止点イベントとして使用し、それぞれに時間的特徴を特徴付ける。
数万のエージェントによる大規模専門家シミュレーションデータセットの実験は、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2024-10-02T06:57:08Z) - Evaluating Multiview Object Consistency in Humans and Image Models [68.36073530804296]
我々は、物体の形状に関するゼロショット視覚的推論を必要とする認知科学の実験的設計を活用する。
我々は500人以上の参加者から行動データの35万件の試行を収集した。
次に、一般的な視覚モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-09-09T17:59:13Z) - Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models [18.327960366321655]
本研究では,ビデオ中のスキャンパスを予測するために,ディープラーニングに基づくソーシャルキュー統合モデルを構築した。
我々は,自由視聴条件下で観察された動的な社会シーンの視線に対するアプローチを評価した。
結果は、すべての観察者のスキャンパスに基づいて訓練された単一の統一モデルが、個別に訓練されたモデルよりも同等以上のパフォーマンスを示すことを示している。
論文 参考訳(メタデータ) (2024-05-05T13:15:11Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiffは、人間の好みを定量化し、抽象性をカバーし、拡散計画をガイドする新しいフレームワークである。
ユーザがカスタマイズした動作と正確に一致し、効率的に切り替えることができます。
選好マッチング,スイッチング,カバーにおいて,他のベースラインに比べて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T13:53:08Z) - Learning signatures of decision making from many individuals playing the
same game [54.33783158658077]
我々は、個人の「行動スタイル」を符号化する表現を学習する予測フレームワークを設計する。
我々は,3本腕のバンディットタスクを行う1,000人の人間による大規模行動データセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-02-21T21:41:53Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Zero-shot meta-learning for small-scale data from human subjects [10.320654885121346]
我々は,サンプル外テストデータに対する限られたトレーニングデータを用いて,新しい予測タスクに迅速に適応するフレームワークを開発した。
本モデルでは, 介入による遅延処理効果を学習し, 設計上はマルチタスク予測を自然に処理できる。
我々のモデルは、より広い人口への小型人間研究の一般化を向上するために重要である。
論文 参考訳(メタデータ) (2022-03-29T17:42:04Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
逆データ収集(ADC)では、人間の労働力がモデルとリアルタイムで対話し、誤った予測を誘発する例を作成しようとする。
ADCの直感的な魅力にも拘わらず、敵対的データセットのトレーニングがより堅牢なモデルを生成するかどうかは不明だ。
論文 参考訳(メタデータ) (2021-06-02T00:48:33Z) - Jointly Predicting Job Performance, Personality, Cognitive Ability,
Affect, and Well-Being [42.67003631848889]
本研究では,身体的および生理的行動,心理的状態と特徴,職能を統合した個人予測分析のためのベンチマークを作成する。
我々は、データマイニング技術をベンチマークとして設計し、ウェアラブルセンサから得られた真のノイズと不完全なデータを用いて、12の標準化された精確なテストに基づいて19の構造を予測する。
論文 参考訳(メタデータ) (2020-06-10T14:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。