論文の概要: Fully Data-driven but Interpretable Human Behavioural Modelling with Differentiable Discrete Choice Model
- arxiv url: http://arxiv.org/abs/2412.19403v2
- Date: Wed, 08 Jan 2025 02:43:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:53:50.902679
- Title: Fully Data-driven but Interpretable Human Behavioural Modelling with Differentiable Discrete Choice Model
- Title(参考訳): 微分離散選択モデルを用いた完全データ駆動型・解釈可能な人間行動モデリング
- Authors: Fumiyasu Makinoshima, Tatsuya Mitomi, Fumiya Makihara, Eigo Segawa,
- Abstract要約: Diff-DCMは、人間の行動の解釈可能なモデリング、学習、予測、制御のための完全なデータ駆動方式である。
実験により、Diff-DCMは様々な種類のデータに適用でき、少量の計算資源しか必要としないことが示された。
この研究は、人間の行動を完全に自動化し、信頼性の高いモデリング、予測、制御のための強力な基礎を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Discrete choice models are essential for modelling various decision-making processes in human behaviour. However, the specification of these models has depended heavily on domain knowledge from experts, and the fully automated but interpretable modelling of complex human behaviours has been a long-standing challenge. In this paper, we introduce the differentiable discrete choice model (Diff-DCM), a fully data-driven method for the interpretable modelling, learning, prediction, and control of complex human behaviours, which is realised by differentiable programming. Solely from input features and choice outcomes without any prior knowledge, Diff-DCM can estimate interpretable closed-form utility functions that reproduce observed behaviours. Comprehensive experiments with both synthetic and real-world data demonstrate that Diff-DCM can be applied to various types of data and requires only a small amount of computational resources for the estimations, which can be completed within tens of seconds on a laptop without any accelerators. In these experiments, we also demonstrate that, using its differentiability, Diff-DCM can provide useful insights into human behaviours, such as an optimal intervention path for effective behavioural changes. This study provides a strong basis for the fully automated and reliable modelling, prediction, and control of human behaviours.
- Abstract(参考訳): 離散選択モデルは、人間の行動における様々な意思決定プロセスのモデル化に不可欠である。
しかし、これらのモデルの仕様は専門家のドメイン知識に大きく依存しており、複雑な人間の振る舞いを完全に自動化しているが解釈可能なモデリングは長年にわたる課題であった。
本稿では、微分可能プログラミングによって実現される複雑な人間の行動の解釈、学習、予測、制御のための完全なデータ駆動方式である微分可能離散選択モデル(Diff-DCM)を紹介する。
Diff-DCMは入力特徴や選択結果に事前の知識がないため、観測された振る舞いを再現する解釈可能な閉形式ユーティリティ関数を推定することができる。
合成データと実世界のデータの両方による総合的な実験により、Diff-DCMは様々な種類のデータに適用可能であることが示され、計算資源の少ない推定しか必要とせず、加速器を使わずにラップトップ上で数十秒以内で完了することが示されている。
これらの実験において、Diff-DCMは、その識別性を用いて、効果的な行動変化のための最適な介入経路など、人間の行動に対する有用な洞察を提供することができることを示した。
この研究は、人間の行動を完全に自動化し、信頼性の高いモデリング、予測、制御のための強力な基礎を提供する。
関連論文リスト
- Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
本研究では,効率的な異常検出に向けて,人間のエージェントの移動行動のモデル化方法について検討する。
我々はGPSデータを時系列の静止点イベントとして使用し、それぞれに時間的特徴を特徴付ける。
数万のエージェントによる大規模専門家シミュレーションデータセットの実験は、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2024-10-02T06:57:08Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiffは、人間の好みを定量化し、抽象性をカバーし、拡散計画をガイドする新しいフレームワークである。
ユーザがカスタマイズした動作と正確に一致し、効率的に切り替えることができます。
選好マッチング,スイッチング,カバーにおいて,他のベースラインに比べて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T13:53:08Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins [6.657586324950896]
Digital Twins (DT) は基本的に動的データ駆動型モデルであり、現実世界のシステムのリアルタイム共生「仮想レプリカ」として機能する。
本稿では, 双方向共生感覚フィードバックを利用して, ヒューマン・イン・ザ・ループ型DDDASおよびDTシステムにおける説明可能性を活用する手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T07:15:12Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans [0.0]
不確実な意思決定タスクでは、人間はそのタスクに関連する情報を探し、統合し、行動する際、特徴的なバイアスを示す。
ここでは,これらのバイアスを総合的に測定・分類した,大規模に収集した先行設計実験のデータを再検討した。
これらのバイアスを集約的に再現するディープラーニングモデルを設計し、個々の行動の変化を捉えます。
論文 参考訳(メタデータ) (2020-12-09T04:34:58Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
本研究では,人間の行動予測に対する条件付き変分オートエンコーダアプローチに関する自己完結型チュートリアルを提供する。
本チュートリアルの目的は,人間の行動予測における最先端の手法の分類をレビューし,構築することである。
論文 参考訳(メタデータ) (2020-08-10T03:18:27Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。