論文の概要: Generative Data Augmentation for Vehicle Detection in Aerial Images
- arxiv url: http://arxiv.org/abs/2012.04902v1
- Date: Wed, 9 Dec 2020 08:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:08:07.258000
- Title: Generative Data Augmentation for Vehicle Detection in Aerial Images
- Title(参考訳): 航空画像における車両検出のための生成データ拡張
- Authors: Hilmi Kumdakc{\i}, Cihan \"Ong\"un, Alptekin Temizel
- Abstract要約: 提案手法は,検出器をより多くのインスタンスで訓練することにより,車両検出性能を向上させる。
実験の結果, 数値計算とDeepFillを統合した場合, 平均精度を25.2%, 平均精度を25.7%向上することがわかった。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scarcity of training data is one of the prominent problems for deep networks
which require large amounts data. Data augmentation is a widely used method to
increase the number of training samples and their variations. In this paper, we
focus on improving vehicle detection performance in aerial images and propose a
generative augmentation method which does not need any extra supervision than
the bounding box annotations of the vehicle objects in the training dataset.
The proposed method increases the performance of vehicle detection by allowing
detectors to be trained with higher number of instances, especially when there
are limited number of training instances. The proposed method is generic in the
sense that it can be integrated with different generators. The experiments show
that the method increases the Average Precision by up to 25.2% and 25.7% when
integrated with Pluralistic and DeepFill respectively.
- Abstract(参考訳): トレーニングデータの不足は、大量のデータを必要とするディープネットワークの大きな問題の1つです。
データ拡張は、トレーニングサンプルの数とバリエーションを増やすために広く使われている方法である。
本稿では,航空画像における車両検出性能の向上に重点を置き,訓練データセットにおける車両オブジェクトのバウンディングボックスアノテーションよりも特別な監視を必要としない生成的拡張手法を提案する。
提案手法は,特に訓練インスタンス数が限られている場合に,検出器をより多くのインスタンスで訓練できるようにすることにより,車両検出性能を向上させる。
提案手法は,異なるジェネレータと統合できるという意味で汎用的である。
実験の結果, 数値計算とDeepFillを統合した場合, 平均精度は25.2%, 平均精度は25.7%向上した。
関連論文リスト
- LOID: Lane Occlusion Inpainting and Detection for Enhanced Autonomous Driving Systems [0.0]
本研究では,難易度の高い環境下での車線検出を向上するための2つの革新的なアプローチを提案する。
最初のアプローチであるAug-Segmentは、CULanesのトレーニングデータセットを増強することで、従来のレーン検出モデルを改善する。
第2のアプローチであるLOID Lane Occlusion Inpainting and Detectionは、塗装モデルを用いて、閉鎖された地域の道路環境を再構築する。
論文 参考訳(メタデータ) (2024-08-17T06:55:40Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Modelはオブジェクト検出のためのスケーラブルなデータエンジンである。
DiffusionEngine(DE)は、高品質な検出指向のトレーニングペアを単一のステージで提供する。
論文 参考訳(メタデータ) (2023-09-07T17:55:01Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Vehicle Detection of Multi-source Remote Sensing Data Using Active
Fine-tuning Network [26.08837467340853]
提案するMs-AFtフレームワークは,移動学習,セグメンテーション,アクティブな分類を,自動ラベリングと検出のための統合されたフレームワークに統合する。
提案したMs-AFtは、未ラベルのデータセットから車両のトレーニングセットを最初に生成するために、微調整ネットワークを使用している。
2つのオープンISPRSベンチマークデータセットで実施された大規模な実験結果は、車両検出のための提案されたMs-AFtの優位性と有効性を示している。
論文 参考訳(メタデータ) (2020-07-16T17:46:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。